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CHAPTER 1 – PHOTOSYNTHESIS OVERVIEW 

 

1.1 The Photosynthetic Process – A Brief Introduction 

Photosynthesis is the process by which light energy is used to drive reactions that 

generate sugars to supply energy for cellular processes.  It is one of the most important 

fundamental biological reactions and occurs in both prokaryotic (e.g. bacteria) and 

eukaryotic (e.g. plants and algae) organisms.  Photosynthesis is also remarkably intricate, 

requiring the coordination of many different steps and reactions in order to successfully 

transform absorbed solar energy into a biochemical usable form of energy.  However, the 

net reaction for all photosynthetic organisms can be reduced to the following, deceptively 

general, equation developed by Van Niel [1] 

   DHA
h

ADH +−⇒+−
22

ν
 

where H2-D is the electron donor, e.g. H20, H2S.  A is the electron acceptor, e.g. CO2, and 

A-H2 is the synthesized sugar.  Amazingly, this simple net equation is responsible for 

creating the oxidizing atmosphere of Earth and the recycling of CO2, both of which are 

necessary for the sustainment of our global ecosystem [1-3]. 

The intricate process needed to arrive at the above equation for photosynthesis 

can be broken down into four main phases: (1) light absorption and energy delivery by 

antenna systems, (2) primary electron transfer in reaction centers, (3) energy stabilization 

by secondary electron transfer, and (4) synthesis and transport of stable sugar products 

[2].  The first phase is a photophysical process, the second and third phases are 

photochemical processes, and the fourth phase is a biochemical process.  This dissertation 

is primarily concerned with the first two phases, the photophysical and initial 
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photochemical processes in photosynthetic complexes.  These phases are often referred to 

as the early events of photosynthesis as they occur on extremely fast timescales (10-15 to 

10-3 s) [3, 5]. 

The first two phases involve light harvesting by antenna system pigment-protein 

complexes and excitation energy transfer (EET) to reaction center (RC) pigment-protein 

complexes for initial charge separation and electron transfer.  Antenna system pigment 

complexes consist of chlorophyll-type molecules, e.g. chlorophyll a and b, 

bacteriochlorophylls, pheophytin a and b, and other kinds of pigment molecules, e.g. 

carotenoid α and β, xanthophylls, to capture solar radiation (see Figure (Fig.) 1 for 

chemical structures) [1, 3].  Since the S1←S0 transitions for these molecules range from  

~ 450 nm to 900 nm, light is collected over a broad wavelength range from the solar 

spectrum (300-1100 nm) filtered by the Earth’s atmosphere [1].  Energy that is collected 

by the antenna complexes is transferred downward, like a funnel, to lower lying, 

chlorophyll containing RC pigment complexes (see Fig. 2).  When excitation energy is 

transferred to a RC, it forms an excited electronic state with a very high redox potential 

(usually ~ 0.4 to 1.1 V) [2, 4] and can therefore donate its electron to a lower energy 

molecule (usually a pheophytin), forming a primary charge separated state.  Altogether, 

the light harvesting and initial charge separation events are extremely efficient, yielding 

nearly 100% quantum efficiency [2]. 

In the third phase, the primary charge-separated state created by the reaction 

center is stabilized by further electron transfer along a chain that is coupled to an engine 

which can store energy in a chemical form (i.e. adenine triphosphate (ATP) synthase).   
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Figure 1.  Chemical structures of (A) chlorophyll, (B) bacteriochlorophyll, (C) the phytyl 
tail, (D) beta-carotene, a carotenoid of photosystem II (PS II) which is responsible for 
quenching singlet states and preventing oxidation to the PS II RC, and (E) zeaxanthin, a 
xanthophyll which is an oxidized hydroxy derivative of beta-carotene, that is responsible 
for quenching reactive oxygen species in cyanobacterial and plant photosynthetic 
organisms.  The phytl tail is abbreviated as R in structures (A) and (B).  The Roman 
numbers I to V label the Chl and BChl rings according to the IUPAC nomenclature 
system.  The structures of pheophytin and bacteriopheophytin are respectively identical to 
chlorophyll and bacteriochlorophyll, except that the central Mg atom is replaced with H 
atoms bonded to rings I and III. 
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Figure 2.  Schematic of light harvesting through antenna pigment molecules and transfer 
to the reaction center, to initiate primary electron transfer (i.e. charge separation) [6]. 
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This electron transfer proceeds by either one of two distinct mechanisms: (i) non-cyclic 

phosphorylation or (ii) cyclic phosphorylation [phosphorylation in this sense means the 

light driven synthesis of ATP from adenine diphosphate (ADP) and phosphate (Pi)] [1, 6].  

Non-cyclic phosphorylation is oxygenic and occurs in cyanobacteria and higher plants.  

Cyclic phosphorlyation is anoxygenic and occurs in green sulfur and purple bacteria [2].  

However, cyanobacteria and plants can undergo cyclic phosphorylation when they are too 

low in energy to run non-cyclic phosphorylation.  The differences between cyclic and 

non-cyclic phosphorylation are outlined in Figs 3-4.  Basically, in cyclic phosphorylation, 

the electron lost from the reaction center returns to re-reduce it.  In non-cyclic 

phosphorylation, the electrons are not recycled; electrons must be obtained from an 

outside source, i.e. H20, to re-reduce the oxidized reaction center.  Non-cyclic 

phosphorylation is also different from cyclic phosphorylation in that a reducing 

compound, nicotinamide adenine dinucleotide phosphate (NADPH), is produced along 

with ATP. 

Consequently, the fourth phase uses the ATP and NADPH generated by the third 

phase in carbon fixation, which generates sugars that the organism can use for energy.  

These are commonly referred to as the dark reactions of photosynthesis, since they can 

take place in the absence of light via the fact that the ATP and NADPH has already been 

generated by light reactions of photosynthesis.  In oxygenic organisms, the dark reactions 

are referred to as the Calvin, Basshan, and Besson cycle, or Calvin cycle [1, 4], after the 

researchers who determined the chemistry of these enzymatic reactions.  The Calvin 

cycle is responsible for CO2 fixation into carbohydrates in oxygenic organisms.  For  
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Figure 3.  Schematic of cyclic phosphorylation in purple bacteria [5].  After the bacterial 
RC is excited by light (hν), primary electron transfer to an iron-ubiquinone complex 
(Fe/Uq) occurs.  The electron leaves the RC through transfer to a ubiquinone (UQ).  It 
then travels to cyctochromes bc1 (cyt bc1), to cytochromes c2 (cyt c2), and finally back to 
reduce the RC, completing the electron transfer cycle.  Meanwhile, the electron transfer 
across the bacterial membrane through UQ creates a proton gradient, which drives ATP 
synthesis via the ATP synthase coupling factor (CF).  
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Figure 4.  Schematic of non-cyclic phosphorylation in cyanobacteria and plants [1].  
When the PS II RC is excited by (hν), primary electron transfer to pheophytin (Pheo) 
occurs, then is passed down to two quinones (Q), a plastiquinone (PQ), cytochrome f (cyt 
f), and to plastocyanin (PC).  After excitation, the photosystem I (PS I) RC transfers an 
electron to a series of iron-sulfur complexes (FeSx, a, b) and PS I is reduced by PC.  
Ferredoxin then reduces FeSb, which is then reduced by NADP reductase (NADP+), 
leading to the synthesis of NADPH and is used in the Calvin cycle.  The PS II RC is 
reduced by H2O (generating O2) and cytochrome b559 (cyt b559).  Electron transfer across 
the thylakoid membrane creates a proton gradient, which drives ATP synthesis via the 
ATP synthase CF.  If the organism is too low in NADPH to synthesize sugars, cyclic 
phosphorylation takes place.  Then electron transfer from FeSx to cytochrome b6 (cyt b6) 
takes place, ensuring that the PS I RC is reduced.  
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anoxygenic organisms, the Calvin cycle is present in purple bacteria, but in green sulphur 

bacteria, reverse tricarboxylic acid cycle (TCA) is used for carbon fixation [4].  

As life has evolved from single celled prokaryotic bacteria to the complex multi-

cellular biological structures of plants and animals, the morphology of photosynthesis has 

also changed.  In prokaryotic organisms, of which there are three groups: cyanobacteria, 

photosynthetic bacteria, and Prochlorophyta, where the photosynthetic machinery is most 

simple.  Cyanobacteria and Prochlorophyta [2, 4] evolve oxygen and contain chlorophyll 

a and b (which are present in plants).  Photosynthetic bacteria are anoxygenic (they use 

carbon, nitrogen, and sulphur compounds as the reductant source) and consist of two 

subgroups: Rhodospirillineae and Chlorobiineae [2,4].  Rhodospirillineae, purple 

bacteria, can use carbon, sulphur, and nitrogen as electron donors and contain 

bacteriochlorophyll a and b.  Chlorobiineae, green sulphur bacteria, use sulphur 

compounds as electron donors (only one species, Chloroflexus aurantiacus, uses CO2 

along with S2- as reductants) and contain bacteriochlorophyll a, c, d, and e.   

For all prokaryotes, the light driven reactions of photosynthesis take place in the 

cellular membrane, as there are no organelles.  In eukaryotic organisms, such as plants 

and algae, the architecture of photosynthesis is much more advanced [1, 2, 4].  Unlike 

prokaryotes, all eukaryotes are oxygenic and contain chlorophyll a and b.  Since 

eukaryotic cells are divided into subcellular organelle structures, photosynthesis takes 

place in organelles called chloroplasts.  It has been speculated that chloroplasts evolved 

from the Prochlorophyta bacteria, Prochloron [4].  Chloroplasts are plastids, that is, they 

have a double membrane surrounding an internal membrane network.  This internal 

membrane provides the chloroplasts with a large volume and surface area, for a very high  
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energy output.  The internal membrane also has folds, known as the chloroplast envelope, 

which contains a liquid, the stroma, and stacks of inner membrane discs or thylakoids 

(see Fig. 5).  Stacks of these thylakoids are called grana.  All pigment protein complexes 

needed for the light dependent reactions of photosynthesis are located in the thylakoid 

membranes.  The dark reactions of photosynthesis occur in the stroma (see Fig. 5B).   

Understanding the complex, multiphasic process of photosynthesis has many 

important scientific implications.  From a biological perspective, understanding 

photosynthesis and how it varies among different organisms is important from structural 

biological, biochemical, evolutionary, and genetic standpoints.  From a more physical 

perspective, understanding the physics of photosynthesis, especially the early events of 

light-harvesting EET and electron transfer, is extremely important as a model for solar 

cell science and technology [8-10].  Information gleaned could have practical 

applications for third or fourth generation photovoltaic devices, in either creating solar 

cells that mimic photosynthesis [11, 12] or actually using photosynthetic complexes in 

bioengineered devices [13, 14]. 

1.2 Photosynthetic Complexes 

While the exact photosynthetic process can vary greatly in different types of 

organisms, the early events of photosynthesis are very similar for all organisms.  The 

basic schematic for all is, as stated before, energy collection by light harvesting 

complexes and transfer to the RC for charge separation.  Light harvesting and RC 

complexes are pigment-protein structures where the chlorophyll or other pigments are 

coupled to a protein structure, giving these complexes unique structures and pigment 

arrangements.  Together the light harvesting and RC complexes make up the  
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A 
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Figure 5.  Structure and organization of the (A) chloroplast and thylakoid membrane (B) 
[7].  The chloroplast consists of an inner and outer membrane.  In the chloroplast 
envelope, the thylakoid membrane is folded into columns (grana) as shown in (A).  The 
fluid inside the chloroplast is the stroma, where the dark reactions or Calvin cycle takes 
place.  All of the light driven reactions take place at the thylakoid membrane as shown in 
(B). 
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photosynthetic unit (PSU) [1, 15].  The PSU is the building block for photophysical and 

photochemical processes in photosynthesis for an organism.  By definition, in one PSU, 

one absorbed photon can yield a charge separated state in a reaction center.  In order to 

increase the surface area for absorption, hundreds of light harvesting complexes per 

reaction center makes up a PSU (see Fig. 6).  Different organisms may have different 

light harvesting complexes and reaction center complexes, but they all conform to this 

basic architecture of the PSU.  

Though different photosynthetic light harvesting and RC complexes serve the 

same function, they each have their own highly specific and unique properties.  For 

example, the PS I RC of cyanobacteria and green plants, has states lower in energy than 

the primary electron donor and these states can act as long wavelength antennas or as 

energy traps for photoprotection [16, 17].  The PS II RC of cyanobacteria and green 

plants is the only RC complex with a primary electron donor high enough in redox 

potential to oxidize water (1.1 V) [18].   

Light harvesting complexes show highly unique properties as well.  The light 

harvesting 2 (LH2) complex of purple bacteria has two highly symmetric chlorophyll 

rings, where one ring is strongly coupled resulting in a manifold of excitonic states 

(B850) while the other ring (B800) has weak coupling between chlorophyll dimers 

resulting in localized excitonic states [19, 20].  The CP43 light harvesting complex of 

cyanobacteria and plants has two quasi-degenerate states at 682.9 nm (B state) and 683.3 

nm (A state), where the B state serves most likely as the main energy transfer pathway to 

the RC due to high correlation with higher lying energy states while the A state functions 

as more of an energy sink, with an excited state lifetime approaching the radiative limit  
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Figure 6.  Schematic of the organization, electron, and energy transfer pathways of PSUs 
in different classes of photosynthetic organisms [1]. 
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for a Chl transition (8 ± 1 ns) [21].  So while different light harvesting and RC complexes 

share the same basic purpose, each particular complex has their own specific niche and 

functionality for EET and/or electron transfer. 

Since light harvesting complexes and reaction center complexes have distinct 

functional differences, and since the study of light harvesting and RC complexes has 

somewhat developed along independent paths, separate sections will be presented to 

discuss the highlights of important structural and spectroscopic research developments.  

Sections 1.2.1 and 1.2.2 will give an overview of historical and recent contributions from 

X-ray crystallography and ultrafast photon-echo, and hole-burning spectroscopy 

experiments for light harvesting and RC complexes, respectively.  However, a more 

thorough treatment will be given to Section 1.2.2, especially regarding the PS I and PS II 

RCs, due to the fact that the research contained in this dissertation focuses on the EET 

and electron transfer properties of these RC complexes. 

1.2.1 Light Harvesting Complexes 

 Light harvesting antenna complexes can be broadly separated into two classes: 

integral membrane antenna complexes and peripheral antenna complexes [2].  Integral 

membrane antennas are complexes in which the pigment-protein crosses the lipid bilayer.  

Peripheral antennas are complexes where the protein does not cross the lipid bilayer but 

coordinate with the pigment-protein complexes in the membrane.  Peripheral antenna 

complexes function to transfer energy to the integral membrane complexes, where energy 

eventually travels to the reaction center.  Peripheral antenna complexes include the 

phycobilisomes of cyanobacteria and red algae and the chlorosomes and Fenna-

Matthews-Olsen (FMO) complex of green bacteria [2].  Due to the availability of a high 
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resolution X-ray structure of FMO [22], many experimental investigations have been 

performed on this complex [23-26]. 

 Integral membrane antenna complexes are the most widely studied complexes 

because of their prime importance in shuttling energy to the RC and also their wide 

structural and functional diversity.  Due to this diversity, they can be broken down into 

further categories [2].  Fused antenna complexes refer to pigment-protein complexes that 

cannot be biochemically separated from the RC.  These include the PS I RC and the 

green sulfur bacterial RC antenna pigment-proteins.  Core antenna complexes are 

pigment-proteins that coordinate with the RC complexes, but can be separated 

biochemically.  These include the CP43/CP47 complexes of the PS II RC and the light 

harvesting 1 (LH1) complex of the purple bacterial RC.  Accessory antenna complexes 

are strongly associated with the RC complexes.  The accessory antenna complexes are 

extremely important because they are the complexes that directly couple the RC system 

to the major light harvesting antenna “pools”.  The amount of accessory complexes per 

RC plus core antennas is variable, usually depending on environmental conditions.  

Examples of accessory antenna complexes include light harvesting complex I (LHCI) and 

light harvesting complex II (LHCII) of the PS I and PS II RC, respectively, along with 

LH2 of the purple bacterial RC.   

 Purple bacterial LH2 and LH1 are among the most widely studied light harvesting 

antenna complexes mainly due to the 2.5 Å X-ray structure of LH2 from Rds. Acidophila 

by Cogdell et al. [27] available in 1995, and the 2.5 Å LH2 structure of Rs. Molischianum 

by Shulten et al. available in 1996 [28].  These structures show the cyclic nature of these 

pigment-protein complexes, 8 and 9 fold symmetric rings comprised of αβ-heterodimers 
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for Rs. Molischianum [27] and Rds. Acidophila [28], respectively.  The structure of LH1 

has been correlated to LH2 through electron density mapping by Ghosh et al. [29]; it is 

now thought that LH1 is a 16 fold symmetric ring that encloses the bacterial RC [30].  

This structural data has stimulated much interest in the energy transfer properties of these 

complexes and the correlation with their cyclic structures.  Theoretical investigations 

have modeled energy transfer in these rings through incoherent Förster hopping and 

exciton dynamics (see Chapter 2).  Additional motivation for research on LH2 and LH1 

is that the anoxygenic bacterial photosynthetic machinery is less complicated than the 

photosynthetic systems of oxygenic bacteria and plants, thus offering well-defined 

systems for studying EET and electron transfer processes.  For those more interested, the 

spectral and energy transfer properties of LH2 and LH1 are summarized in references 

[19, 31, 32]. 

 LHCII of PS II has had structural data available for many years, which has 

stimulated research into the properties of this complex.  In 1994, Kühlbrandt et al. [33], 

through electron diffraction and electron microscopy experiments on two-dimensional 

crystals of LHCII at cryogenic temperatures, determined the structure of the trimeric 

form at 3.4 Å resolution (parallel to the crystal plane) and 4.4-4.9 Å (perpendicular to the 

crystal plane).  Trimeric LHCII consists of three transmembrane α-helices and a short 

amphiphilic helix.  Each monomer binds 12 Chls and 3 xanthophylls (Xan).  The 

determination of this structure has been very important due to its high level of sequence 

homology with the minor light harvesting complexes of PS II complexes such as 

CP26/CP29 and LHCI of PS I [34].  Until recently [35], the structural determination did 

not provide a high enough resolution to correctly assign the positions of all the Chls and 
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Xans.  While the exact structural model of LHCII has not been agreed upon, even with 

the recently obtained higher resolution structural data [35], LHCII has been found to have 

some very unique energy transfer properties [19, 34-37].  It has been found that the 

energy transfer time between the monomeric pigments in the trimer is much slower (tens 

of picoseconds) compared to energy equilibration in bacterial LH2 and LH1 (hundreds of 

femtoseconds) [19, 34, 37].  It was theorized in reference [37] that this slower transfer 

time allows for increased energy trapping in the PS II RC, in which energy transfer 

equilibrates on same timescale (tens of picoseconds) [34, 36, 37].  LHCII is also thought 

to serve as a structural model for LHCI [38, 39], due to homologous protein sequences, 

and, consequently, has stimulated experimental investigations of this complex [40, 41].  

For more information on LHCI, and recent experimental investigations, the following 

references [34, 42, 43] are suggested. 

 Along with LHCII, CP43 and CP47 of PS II have also been widely studied.  CP43 

and CP47 are proximal core light antennas to the D1 and D2 proteins of PS II, which 

binds the RC cofactors.  Since CP43 and CP47 are biochemically fused to the PS II RC, 

PS II RC complexes (“core” PS II complexes) can be prepared and studied to probe the 

coupling of CP43 and CP47 to the RC [44-46].  X-ray structural data has also been 

published on these complexes, with the most recent by Iwata et al. at 3.4 Å resolution in 

2004 [47].  With no high-resolution structural data available, though, there is still some 

discrepancy over the exact Chl number, positions, and assignments in CP43/CP47 [47, 

48].  Both CP43 and CP47, however, have three pair of α-helices and a shared sequence 

homology [49, 50].  Therefore, it is expected that CP43 and CP47 should bind a similar 

number of pigments.  The recent data by Iwata et al. determines that CP43 and CP47 bind 
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14 and 16 Chls, respectively, and that for both CP43 and CP47, the Chls are arranged in 

layers on the stromal and luminal sides of the membrane except for one Chl equidistant 

between the membrane surfaces, forming stacks of Chls that span the membrane.  Other 

earlier studies have suggested that CP43 and CP47 bind between 14-16 Chls [48, 50-52]. 

 Many experimental investigations have been performed to determine the 

CP43/CP47-RC energy transfer kinetics.  Frequency domain spectroscopic investigations 

(fluorescence line-narrowing [53] and hole-burning (HB) [48, 53, 54]) on isolated 

CP43/CP47 has shown the presence of a long lived energy trap (~ 50 ps) at 690 nm for 

CP47, which likely correlates to the lowest state of an excitonically coupled Chl dimer 

[53], while CP43 possesses two quasi-degenerate traps at ~ 683 nm that have dephasing 

times on the order of nanoseconds [48].  For comparison, ultrafast experiments for 

CP43/CP47 have shown energy transfer components of 200-400 fs and 2-3 ps [55].  

Experiments on “core” PS II RC complexes also show similar results for frequency and 

time domain techniques, with HB experiments predicting CP43/CP47 to RC energy 

transfer times of 70-270 ps [44], and time-resolved fluorescence experiments predicting 

CP43/CP47 to RC energy transfer times of 1.5-10 ps [55].  Recent attention has also 

turned to the study of energy transfer in PS I-IsiA supercomplexes of cyanobacteria that 

form under iron stress conditions, where the IsiA complex is sequentially homologous to 

CP43 of PS II and is often referred to as CP43´ [56].  Preliminary experiments have 

shown that the spectral properties of CP43´ are very similar to CP43, but with a 

noticeable difference in that CP43´ possesses only one absorption band at ~ 682 nm and 

not two quasi-degenerate states like CP43 (see Chapter 5 for details). 
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1.2.2 Reaction Center Complexes 

 The RC, as stated before, is responsible for charge separation and initiating 

electron transfer and thus converting light energy into chemical energy.  It is a complex 

with a definite stoichiometry that can be separated biochemically from the rest of the 

photosynthetic machinery [2].  However, the biochemical isolation and structural 

determination of reaction center complexes was a slow process with contributions from 

many research groups [2, 57-62].  The concept of the reaction center first developed out 

the flash experiments by Emerson and Arnold in the 1930s, in which they determined that 

only one molecule of O2 was produced per ~ 2500 Chl molecules [52-54].  From this, 

Gaffron and Wahl theorized that not all chlorophylls have the same function and came 

with idea of the photosynthetic unit, differentiating between Chls that are responsible for 

light harvesting (antennas) and Chls involved in the photochemical processes of 

photosynthesis (reaction centers) [60-62].  Work by Duysens et al. in the 1950s on purple 

bacteria offered support for their RC model, along with later work Bessel Kok in 1957 on 

PS I and Horst Witt in 1967 on PS II.   

1.2.2.a Bacterial Reaction Center 

The purple bacterial RC complex is currently the most well understood RC due to 

the large amount of high resolution X-ray structural data available and also because of its 

straightforward spectral nature when compared to the RCs of oxygenic photosynthesis.  

In particular, the RC of Rhodobacter (Rb.) Sphaeroides is arguably the most widely 

studied and understood, serving as a basic model for RC energy and electron transfer.  

While Rb. Sphaeroides might be the best characterized, it was not the first purple 

bacterial RC to have its protein structure determined.  The first high-resolution purple 
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bacterial X-ray structure was the four-subunit complex (LMHC) of Rhodopseduomonas 

(Rps.) viridis by Michel, Deisenhofer, and Huber [63-65].  Later, other groups 

determined the X-ray structure of the three-subunit complex (LMH) of Rb. Sphaeroides 

[66, 67].   

Purple bacterial reaction centers can consist of either three or four protein 

subunits, depending upon the species [2].  The subunits are designated as light (L), 

medium (M), heavy (H), and/or cytochrome (C) [2, 69].  It should be noted, though, that 

these designations were made before the true molecular masses of the subunits could 

accurately be determined and do not indicate the true masses of the subunits (H is the 

lowest mass, L is the next heavier, and M is the heaviest mass).  The reaction centers also 

contain a number of non-covalently bound cofactors, such as four bacteriochlorophyll 

molecules (BChl) – the bacteriochlorophyll special pair dimer (PA, PB) and the two 

accessory bacteriochlorophylls (BA, BB), two bacteriopheophytin molecules (BPhA, 

BPhB), two quinones (QA, QB), one metal atom (i.e. Fe 2+), and usually one carotenoid 

[2].  The special pair BChls are interesting in that they are a strongly excitonically 

coupled dimer (~ 1350 cm-1 excitonic splitting at 4 K for Rb. Sphaeroides [70]), due to 

the small interplanar distance between these chlorins (see Fig. 8b), and also because they 

are the primary electron donor for electron transfer.  The special pair BChls are referred 

to as P870 in Rb. Sphaeroides and P960 in Rps. Viridis.  The above assignment is based 

on the maximum absorbance wavelength of their lowest excitonic bands, which for Rb. 

Sphaeroides and Rps. Viridis is at 870 and 960 nm, respectively. 

In Rb. Sphaeroides, the L and M subunits are the core membrane structure, where 

both subunits consist of five transmembrane helices that are arranged in a pseudo-C2 
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Figure 7.  Bacterial RC structure at 2.55 Å resolution [68].  In (A), PA, PB are the special 
pair BChls, BA, BB are the accessory BChls, BPhA, BPhB are the bacteriopheophytins, 
and QA, QB are the quinones.  The active branch where electron transfer occurs is labeled 
as A, while the inactive branch is labeled as B.  The RC structure is located transversely 
across the membrane with the special pair oriented towards the periplasmic side and the 
quinones toward the cytoplasmic side.  In (B), the short intermolecular distance between 
the special pair dimer Chls results in the large splitting of the excitonic states. 
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symmetry.  The H subunit is oriented on the cytoplasmic side of the intracytoplasmic 

membrane.  The C subunit is not present in all purple bacterial reaction centers and is not 

considered an integral membrane protein since it does not posses any transmembrane 

segments [2].  The C subunits main function is to bind four heme molecules that can 

accept an electron from cyt c2 to reduce the oxidized reaction center.  Additionally, the 

non-covalently bound cofactors are also arranged in a pseudo-C2 symmetry.  The special 

pair bacteriochlorophylls (PA, PB) are oriented to the periplasmic side of the membrane 

and are surrounded by BA and BB.  The two bacteriopheophytins (BPhA, BPhB) are each 

located behind the corresponding bacteriochlorophylls (BA, BB), towards the cytoplasmic 

side.  Correspondingly, the quinones are located behind the bacteriopheophytins.  

Overall, this orientation of cofactors forms two electron transfer chains or pathways for 

charge separation in the RC (see Fig. 7A). 

Upon optical excitation, P870 forms P870* in Rb. Sphaeroides, and initial 

electron transfer occurs within a few picoseconds [71], forming  through   

After approximately 200 ps, further electron transfer forms  and then eventually 

.  In wild-type RCs, electron transfer always occurs along the A branch and 

minimally along the B branch [65, 66].  It is theorized that A-side electron transfer occurs 

preferentially due to the relative free energy difference between the initial excited state 

P870* and , with electron transfer along this side conserving more energy for 

proton pumping [71].  This overall electron transfer reaction that forms the stable charge-

separated state is shown in Fig. 3.  Interestingly, the recombination rates of the electron 

transfer (back to the primary electron donor) are ~ 50 times slower than the forward 

transfer rates [2].  These advantageous kinetics help allow for charge separation to have 
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such a high quantum yield and to make the light driven reactions of photosynthesis so 

efficient.   

 Numerous spectroscopic studies have been performed on Rb. Sphaeroides and 

Rps. Viridis to investigate their energy and electron transfer properties.  Both frequency 

and time domain spectroscopies have determined that the excited state lifetime of both 

P870* and P960*, which determines the primary charge separation process, to be ~ 3 ps 

and ~ 1 ps at room temperatures and cryogenic temperatures, respectively [74-76].  

Spectral HB studies [77] have specifically shown that the special pair BChls of P870 and 

P960 have strong electron-phonon coupling which results in large homogeneous 

broadening of the band, with a special pair intramolecular phonon “marker” mode that 

contributes to the Marcus reorganization energy for initial electron transfer.  However, 

this marker mode does not act as a phononic “trigger” for electron transfer, since the 

electron transfer rate increases as temperature decreases.  Also, the lack of high energy 

satellite zero-phonon holes (ZPH) from this marker mode, which are vibronic replicas of 

the purely electronic ZPH, show that thermalization of the phonon modes for P* occurs 

on a ultrafast timescale of ~ 100 fs (for details, see Chapter 3).   

1.2.2.b Photosystem I Reaction Center 

 In oxygenic photosynthetic systems, the PS I RC is the reaction center that is 

responsible for providing the electrons that reduce NADP+ to NADPH, which is used in 

the Calvin cycle to synthesize sugars.  The Calvin cycle is important from an ecological 

perspective because it is responsible for the recycling of atmospheric CO2.  The size of 

the PS I complex is very large when compared with other reaction center complexes, e.g. 

the complex coordinates ~ 90 Chl molecules and 12-16 β-carotene molecules in 



www.manaraa.com

 23

monomeric form.  Since most of these Chls and cofactors and part of the integral 

membrane antenna complex of PS I, they cannot be separated from the RC cofactors 

where charge separation occurs.  PS I also occurs in a trimeric form in cyanobacteria, 

where the complex contains three RCs and ~ 270 antenna Chl molecules arranged in a 

C3-like symmetry. 

 The X-ray structure of trimeric cyanobacterial PS I from Thermosynechococcus 

elongatus is currently available at a resolution of 2.5 Å, determined by Fromme et al. 

[78].  Each monomer of the trimer is composed of 12 different protein subunits that bind 

96 Chls, 22 carotenoids, three 4Fe4S clusters, 2 phylloquinones, and 4 lipids.  The PSaA 

and PsaB subunits in the center of the monomer are the most important as they bind the 

RC Chls and cofactors along with the majority of the antenna pigments.  The reaction 

center of PS I consists of six Chls (P700 special pair Chls, two A Chls, and two A0 Chls), 

two phylloquinones (two A1), and three iron sulfur (4Fe4S) centers, FX, FA, and FB.   

These cofactors are arranged in two symmetrical branches, like the bacterial RC, 

with pseudo-C2 symmetry.  The P700 special pair are located most luminally compared 

to the other cofactors and are strongly coupled, like the bacterial RC, and form the 

primary electron donor P700* when optically excited.  In fact, the P700 special pair is ~ 

1-2 Å closer together than the bacterial special pair (6.3 Å vs. 7.5 Å); however, the 

coupling in P700 is not as strong due to less favorable orientation of the Chl transition 

dipole moments.  The two symmetrical branches are labeled A and B, and contain the 

other A, A0, and A1 cofactors.  The symmetry is then broken by the FX iron sulfur center, 

which is located between the two branches.  The FA,B clusters, which are not bound by 

PsaA or PsaB but rather PsaC, are located behind the FX cluster.  Fig. 8 shows the  
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Figure 8.  PS I X-ray structure at 3.0 Å resolution from Fromme et al. [91].  Frames (A) 
and (B) show the trimeric PS II structure which coordinates ~ 296 Chl molecules, from 
both (A) top (stromal) and (B) side (stromal-lumen) views.  Frames (C) and (D) show the 
PS I RC structure from alternate angle views.  P700 labels the primary electron donor 
Chls, A and A0 labels the other Chls in the electron transfer chain and QK labels the 
quinone or A1 cofactors.  FX, FA, FB are the iron-sulfur cofactors in the electron transfer 
chain that are responsible for creating a stable charge separated state.   
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the arrangement of various cofactors in the PS I reaction center. 

The 90 antenna Chls surround the RC in each monomer in order to maximize the 

cross-sectional area available for light absorption.  Except for two Chls, the minimum 

distance from any of the antenna Chls to the RC cofactors is ~ 20 Å.  These two other 

Chls are ~ 14 Å from the RC cofactors and have been referred to as “linker” Chls, since it 

has been suggested that they function as ‘connectors’ for energy transport between the 

antenna and RC pigments [78, 79].  While cyanobacteria lack the LHCI complex present 

in PS I of green plants, there is high sequence homology between bacterial and plant PS I 

along with similar spectroscopic properties [80].  This indicates significant structural 

correlation between the two complexes.  As a result, cyanobacterial PS I is often used as 

a structural model for plant PS I. 

In cyanobacterial PS I, there is some discrepancy about the initial charge 

separation kinetics resulting from excitation of P700.  For example, in references [81-83] 

it has been proposed that initial charge separation occurs in ~ 1 ps after P700 excitation; 

however, other researchers suggest that there is an additional slower phase of 6-10 ps due 

to energy equilibration among the RC cofactors [84, 85].  In primary charge separation, 

the A0 Chl is thought to be the first electron acceptor that can be resolved 

spectroscopically, forming the  radical pair.  The transfer times for the 

subsequent electron transfer reactions are more agreed upon, with the radical 

pair forming in ~ 15-30 ps [82, 83, 85] and then  forming biphasically with 

time constants of ~ 25 and ~ 250 ns [86, 87].  Electron transfer is thought to be 

asymmetric in PS I, with transfer taking place on the A branch, as revealed recently by 
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experiments on PS I mutants [88].  A detailed illustration of these electron transfer steps 

is shown in Fig. 4. 

Energy equilibration and transfer times in the antenna pigments of cyanobacterial 

PS I have reached a more unified agreement than the charge separation dynamics.  

Ultrafast spectroscopy experiments by a number of groups have indicated that these 

events occur on three different time scales: a ~ 400 fs component due to energy 

equilibration in “bulk” antenna Chls, a ~ 20-35 ps component resulting from energy 

transfer decay due to trapping by the RC, and a ~ 5 ps component due to energy 

equilibration between the bulk antenna Chls and “red” antenna Chls (antenna states that 

are lower in energy than the P700 primary donor state) [80, 89, 90].  The “red” states 

prevent a direct comparison of cyanobacterial light harvesting energy equilibration and 

transfer dynamics to those of green plants and algae, since the amount of the red states is 

species dependent.  Overall, electron and energy transfer times for cyanobacterial PS I 

must be taken as “rule of thumb measurements” for other organisms because of the 

structural differences between PS I complexes.   

The red antenna states in cyanobacterial PS I are thought to occur from strongly 

coupled Chl dimer or trimer molecules in the PS I antenna whose lowest excitonic state 

absorbs at longer wavelengths than P700 [16, 78].  The X-ray data indicates that there are 

many candidates that could be the origin of these red states, complicating their final 

assignments.  Since the site energies for the Chl molecules cannot be precisely 

determined, different research groups have proposed different assignments of Chls that 

constitute the red antenna states [16, 78, 80, 91-93].  However, the number of red states 

for cyanobacteria is more agreed upon.  It is generally thought that Synechocystis PCC 
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6803 and Thermosynechococcus elongatus possess two and three red states, respectively 

[78], with the most convincing evidence for these conclusions being supplied by Small 

and coworkers through high-resolution HB experiments [16, 94, 95].  Through coupling 

high pressure and electric field to HB measurements, they found that different linear-

pressure shift rates, magnitude of permanent dipole moment change (fΔμ), and electron-

phonon coupling strengths for spectral holes burned between 700-725 nm identified three 

low energy states that absorb at 708 (C708), 715 (C715), and 719 nm (C719) in 

Thermosynechococcus elongatus [16].  In Synechocystis PCC 6803, Small and coworkers 

identified only two low energy red states that absorb at 708 (C708) and 714 nm (C714) 

[94, 95].  For green plants it has been suggested that there are two red states absorbing at 

706 and 714 nm [94, 95].  Additionally, there is discrepancy over the function of these 

red state pigments.  Some have argued that they increase the light absorption area of the 

antenna, especially for oceanic cyanobacteria where shorter wavelengths of light are 

filtered out [96, 97, 98].  Others suggest that they act as reservoirs which funnel energy 

back to the RC to decrease back-transfer to the bulk antenna pigments where 

radiationless decay can occur, increasing the efficiency of the light harvesting process 

[78] or that they help to maintain optimal energy equilibration within the antenna [98]. 

Currently, most research on PS I involves the determination of the exact structural 

nature and assignment of the red state pigments.  The location of at least some of the red 

states had been linked to the trimerization region in Synechocystis PCC 6803, as mutants 

that lacked the PsaL and PsaM protein subunits, which are responsible for the formation 

of trimers, show ~ 30% less red state absorption at C708 when compared to PS I trimers 

[95].  Mutants that lacked the Psa F or Psa K subunits, located at the opposite side of the 
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trimeric domain, showed normal C708 absorption.  Another study has shown that the 

strength of C708 and C714 absorption depends on the ratio of trimeric/monomeric PS I 

[99].  Thus, it is inferred that the Chl dimer or trimer responsible for the C708 state is 

bound to either of the core PsaA or PsaB subunits and near the interfacial region with 

PsaL and PsaM.  Based on this and other experimental observations (see above), Small 

and coworkers have suggested that the two most strongly coupled dimers in the core PS I 

antenna, A38-A39 and B36-B37, are responsible for the C708 and C714 red state bands 

in Synechocystis PCC 6803, respectively [16, 94, 95].  In Thermosynechococcus, an extra 

trimer (B31-B32-B33) is bound that is not present in Synechocystis and is thought to be 

the origin of either the C708 or C714 state [78], with the other previously mentioned 

dimers being responsible for the remaining red states.  While these assignments have 

been supported [98], other groups have suggested different Chl dimers as the origin of the 

red states [91-93]; therefore, these structural assignments must be considered preliminary 

and tentative at the present time. 

1.2.2.c Photosystem II Reaction Center 

 The other reaction center in oxygenic photosynthesis is the photosystem II RC.  

Photosystem II is unique in that it is the only RC with a high enough redox potential (~ 

1.1-1.7 mV) to oxidize water, which results in O2 as a by-product [18].  This functional 

ability has allowed oxygenic photosynthetic organisms to create the oxidizing atmosphere 

of our current global ecosystem.  The structure of PS II is interesting in that it shows high 

homology to the bacterial RC (e.g. Rb. Sphaeroides) [65, 100-105].  Like the bacterial 

RC, primary charge separation in PS II occurs between a Chl primary donor (P680 in PS 

II) and a pheophytin acceptor (Pheo).  After primary charge separation, the electron is  
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Figure 9.  PS II X-ray structure at 2.5 Å resolution from Zouni et al. [108].  In (A), the 
PS II monomer from the cytoplasmic side is shown.  The D1, D2 proteins are respectively 
colored yellow and orange, the CP43 and CP47 antenna complexes are purple and red, 
while a and b of cyt b559 are colored green and cyan.  In (B), the structure and orientation 
of the RC cofactors is shown, while in (C) the respective distances (in Å) between the 
cofactors are shown.  PD1, PD2 are the P1, P2 Chls which are analogous the bacterial 
special pair (PA, PB) Chls.  The labeling convention for the other cofactors follows 
correspondingly.  
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transferred to quinone acceptors, QA and QB (plastoquinone in PS II).  The redox 

potentials of these reducing cofactors are very similar to those of the bacterial RC [106].  

The shape of the PS II RC is also analogous.  Specifically, P1, P2 in PS II are counterparts 

to the bacterial special pair, Chl1, Chl2 are accessory Chl counterparts to the bacterial B1, 

B2 molecules, and Pheo1, Pheo2 are pheophytin counterparts to the BPhA. BPhB
 

molecules.  However, there are also two additional Chls on the periphery of the PS II RC, 

designated ChlZ1 and ChlZ2.  These “linker” Chls are essentially decoupled from the RC 

(with ~ 25 Å distance to the nearest RC pigment).  The function of these linker Chls is as 

of yet unknown, but it has been suggested they may play a photoprotective role for the PS 

II RC [107].  Recently, Zouni et al. have determined the X-ray structure of PS II at a 

resolution of 2.5 Å [108], which allows for almost complete resolution of all the cofactors 

(see Fig. 9). 

 Conversely, the PS II RC has some very different physical properties compared to 

the bacterial RC, due to its aforementioned functional purpose.  Unlike the bacterial RC, 

in which the RC Qy pigment transitions absorb over ~ 2,500 cm-1, the PS II RC Qy 

spectrum  spans only ~ 600 cm-1.  Also, the bacterial special pair is a strongly coupled 

dimer where the upper and lower excitonic levels are split by ~ 1350 cm-1 at 4K.  The 

strongest coupling in the PS II RC is between P1and P2 and is much weaker (≥ 300 cm-1 

at ~ 4K), even though the Mg-Mg center-center distance is comparable to the bacterial 

special pair at ~ 7.6-8.2 Å, due to the unfavorable orientation of the Chl dipole planes 

[47, 108].  Thus, P870* (lowest excitonic level of the dimer) is highly localized on the 

special pair Chls, while in P680* this cannot be assumed.  It is plausible then to think of 

the primary donor state as being delocalized over the RC chlorin pigments.  In light of 



www.manaraa.com

 31

this, Durrant et al. [109] have proposed a “multimer” model for energy and electron 

transfer within the PS II RC.  In this model, the RC pigments (P1, P2, Chl1, Chl2, Pheo1, 

Pheo2) are excitonically coupled in the dipole-dipole approximation; however, the 

inhomogeneous broadening of the individual Qy states is comparable (~ 210 cm-1) to 

these couplings, due to intrinsic structural disorder.  This results in P680* being 

heterogeneous and not well defined.  The multimer model predicts a similar intensity 

distribution of the Qy states when compared to experimental spectra, with the two lowest 

states absorbing between 680-684 nm and the other states between 665-676 nm.  

However, there are some flaws with the multimer model.  For example, the multimer 

model predicts that the reduction or oxidation of any cofactor should result in strong 

bleaching in the 680-684 nm region, due to the fact that there is significant contribution 

from all the cofactors to the lowest state [110].   

 Jankowiak et al. found, though, that in experiments on PS II RC-5 samples (see 

below) reduced by sodium dithionite, no prominent bleach at ~ 680 nm was seen.  

Instead, there was a resulting decrease in absorption at 668 nm, which was assigned to a 

Qy state localized on Pheo2 [111].  This reduction step was confirmed to be selective for 

Pheo2 based on an additional Pheo2 Qx bleach (at ~ 544 nm) from the dithionite exposure 

[112] and that Pheo1 can only be reduced by white light illumination and dithionite 

exposure [113].  In fact, reduction with dithonite and white light illumination by 

Jankowiak et al. on RC-5 samples showed a prominent bleach at ~ 680 nm, indicating 

that Pheo1 is excitonically coupled to the other RC cofactors [112].  Jankowiak concluded 

then that Pheo2 was excitonically decoupled from the other RC cofactors through 

dielectric screening caused by the local surrounding protein environment (e.g. an acidic 
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environment or π-π stacking forces which tautomerize the Pheo2 macrocyle, thereby 

reducing excitonic coupling to the other cofactors).  Therefore, a “pentamer” model was 

proposed where Pheo2 is excitonically decoupled from the other five RC cofactors [110].  

Like the multimer model, the excitonic couplings in the pentamer model were assumed to 

be in the dipole-dipole approximation.  Random disorder of the cofactor transition 

energies, resulting from the PS II structural heterogeneity, was accounted for in the 

pentamer model by Monte Carlo simulations where the transition energies of the 

cofactors are convolved against a Gaussian site distribution function with a width of 210 

cm-1.  As a result, the site distribution energy functions (SDFs) of the cofactors are 

uncorrelated in the pentamer model.  This is an important feature as spectral hole-burning 

studies have shown that the SDFs of Qy states are uncorrelated in several photosynthetic 

complexes. [23] 

 The pentamer model developed by Jankowiak et al. correctly predicts the low 

energy features of the PS II RC Qy absorption spectrum (i.e. the lowest exciton state is 

the most strongly absorbing and located at ~ 680 nm).  Like the multimer model, the 

pentamer model predicts that the composition of the lowest exciton state is heterogeneous 

due to intrinsic structural heterogeneity of the protein environment, with delocalization 

over both the D1/D2 branches.  However, the pentamer model provides some unique 

insights into the nature of P680* over the multimer model.  Simulations of experimental 

triplet bottleneck hole burned spectra of RC-5 using the pentamer model by Jankowiak 

and coworkers showed that best fits were obtained when the triplet 

( ) from charge recombination was localized on Chl1, not 

P1, P2.  This is important as recent work by van Grondelle et al. have proposed, through 

1
*3

1 PheoP680PheoP680 →−+
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ultrafast vibrational spectroscopy experiments, that the triplet state is localized on Chl1 

[114].  They also argue that the since the triplet state is localized on Chl1, it is most likely 

the primary donor state (P680*).  However, they do not recognize the prediction of this 

phenomenon by the pentamer model, which also predicts that even though the triplet is 

localized on Chl1, the primary donor composition is still heterogeneous and not localized 

on any particular cofactor.   

 The delocalization of the primary donor state predicted by the pentamer and 

multimer models has very important implications regarding the primary charge separation 

kinetics of PS II.  Numerous groups have reported conflicting primary charge separation 

rates for both room temperature, (i.e. (0.4 ps-1) [113, 1115], (3 ps-1) [116-118], (8 ps-1) 

[119], (21 ps-1) [120]), and low temperature, (i.e. (~ 2-5 ps-1) [121-126]), experiments.  In 

addition, Prokhorenko and Holzwarth have reported low temperature (1.3 K) photon echo 

experiments in which theoretical modeling of the experimental spectra imply that the 

primary charge separation kinetics are highly dispersive (~ 2 ps-2 ns) and not single 

exponential [127].  Recently, HB experiments and theoretical simulations published by 

our group (see Chapter 4) have given further support to the heterogeneous nature of 

P680* suggested by the multimer and pentamer models.  This heterogeneity manifests as 

highly dispersive primary charge separation kinetics where the primary donor state has 

the highest probability of being localized on either the P1, P2, or Chl1 pigments but with 

significant contribution from all other coupled RC pigment cofactors.   

 After charge separation, the primary radical pair (P680+ Pheo1
-) is formed, where 

Pheo1 is assumed to be the electron acceptor due to its stronger coupling to the other RC 

pigments compared to Pheo2 [110] and by analogy with the bacterial RC.  Then the 
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electron is transferred to QA in 300-500 ps and then to QB in 200 μs [2].  During this 

process the oxygen-evolving complex (OEC) reduces P680+.  The overall reaction of this 

process is given by the following equation: [2].  From this it 

can be seen that this is a four-electron process while the process of charge separation in 

the RC is a one-electron process.  Therefore, the OEC has evolved the S-state mechanism 

that consists of five states, S0 through S4, which represent consecutively higher oxidative 

states of the OEC.  Only when the OEC reaches S4 does oxygen evolution occur.  This 

mechanism is significant because it allows the synchronization of one or many RCs per 

OEC.  It has been shown that the S states represent the different oxidative forms of the 

four Mn atom cluster bound by the OEC [128, 129].  Still, the S-state mechanism is not 

completely understood and several pathways have been proposed though as to how the 

OEC exactly oxidizes water.  For a more detailed review of the physics and chemistry of 

this important process and of the OEC complex, the following references are suggested 

[2, 128].   

−+ ++→ eHOOH 442 22

 Unlike the PS I RC, the P SII RC can be prepared in different forms since the D1, 

D2 proteins only bind the RC cofactors and not any antenna pigment complexes.  The PS 

II RC can be prepared for study in “isolated” form, where the PS II RC complex is 

purified with just the D1, D2, cytochrome b559, PsbI, and PsbW proteins.  However, these 

preparations lack quinones for secondary electron transfer and the ability to evolve 

oxygen.  “Core” PS II complexes (see Section 1.2.1) and “supercore” PS II complexes 

(with the peripheral LHCII and CP29/26 antenna proteins along with the core CP43/47 

antenna proteins included) can be also be prepared [130].  In “supercore” PS II 

complexes, oxygen-evolving capabilities are maintained [130].  All these purification 
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methods have several protocols and have shown varying levels of purity [130, 131].  In 

“isolated” PS II RC complexes, some preparations lack one peripheral Chl (RC-5) while 

other preparations provide the intact RC with all six Chls (RC-6) [119, 132].  In isolated 

RC-5 preparations, there is a pronounced shoulder at 684 nm that absorbs lower than the 

main absorption band at 680 nm.  The nature of this 684 state has been debated 

extensively [133].  The most current interpretations suggest that the 684 nm state is the 

lowest energy state of the primary donor (P684) that originates from intact RC 

complexes, with the P680 state being the lowest energy state of that originates from the 

primary donor (P680) of perturbed RC complexes.  Therefore, it was concluded that it is 

the intrinsic structural heterogeneity of these PS II RC complexes that results in the 

formation of P684 (see Chapter 4).  Supercore RC complexes have shown interesting 

spectroscopic properties when compared to isolated RC complexes.  Krausz et al have 

reported that P680 is red shifted in supercore complexes, as illumination at 685-700 nm 

results in efficient charge separation.  They also report that deep spectral holes with 

lifetimes of 40-300 ps can be burned in the P680 band at low temperatures (~ 4 K).  They 

explain this phenomenon as a result of “slow” energy transfer from the core CP43/CP47 

antenna complexes to the RC.  This slow energy transfer mechanism is supported by their 

experiments on “core” PS II samples in which time-resolved and transient absorption 

multiexponential decay times at room temperature are ~ 2x longer in CP47-RC “core” 

complexes versus isolated RC complexes [44-46]. 

 Currently, the exact nature of charge separation and energy transfer in the PS II 

RC still eludes researchers. A higher resolution (< 2.5 Å) X-ray structure for PS II is 

clearly needed for certain assignment of pigment distances and positions.  However, 
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promising developments in this area [108] along with high-resolution experimental 

methods such as single molecule spectroscopy (see Chapter 6) may help to provide a 

clearer understanding of this important photosynthetic complex.   

1.3 Thesis Organization 

 In this dissertation, the early photophysical and photochemical events - light 

harvesting energy transfer and initial charge separation in oxygenic reaction centers - are 

studied.  Following the introduction to photosynthesis and background of studied 

photosynthetic pigment-protein complexes given in Chapter 1, Chapter 2 gives a brief but 

detailed overview of the developed theories used to model energy transfer and primary 

electron transfer processes in these photosynthetic complexes.  The processes include 

Förster and Dexter theories of energy transfer, molecular excitonic interactions in 

photosynthetic complexes, and energy transfer via exciton-phonon scattering.  Chapter 3 

provides an overview of hole-burning and single-molecule spectroscopy; moreover, high 

resolution experimental spectroscopic techniques used to study the EET and electron 

transfer events in various photosynthetic complexes are described.  Chapters 4 to 6 are 

published research papers.  In Chapter 4, hole-burning spectroscopy coupled with electric 

field and high-pressure was used to investigate the lowest energy donor state (P680) of 

the PS II RC of green plants.  Theoretical modeling of HB experiments, along with 

excitonic calculations of energy transfer in the PS II RC, was also performed to help 

characterize these hole-burning experiments.  In Chapter 5, hole-burning spectroscopy 

and theoretical calculations were used to investigate the energy transfer properties of PS 

I-CP43′ supercomplexes of cyanobacteria that form under iron-stress conditions.  These 

experiments specifically probe the connectivity in EET between the CP43´ antenna 
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complex and PS I.  In Chapter 6, bulk hole-burning spectroscopy experiments and single-

molecule spectroscopy experiments of on single PS I complexes were performed to 

characterize the connectivity of energy transfer between different pools of red state 

antenna pigments in Synechocystis PCC 6803 and Thermosynechococcus elongatus.  

Lastly, Chapter 7 provides a short introduction of current and future research on PCs that 

is impacting the developing field of molecular electronics, while Chapter 8 presents 

preliminary data for using trimeric photosynthetic PS I RC complexes as a basis for the 

nanoscale molecular electronic architecture for these types of devices.  As stated before, 

photosynthetic pigment-protein complexes serve as an ideal model for photovoltaic cells, 

which will be needed in the 21st century due to exhaustion of traditional fossil fuel 

sources.  Considering that the earth receives about 5.2 x 1021 kJ/year [10] of solar energy, 

the development of higher efficiency photovoltaics would have an enormous impact for 

renewable energy technology.  
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CHAPTER 2 – ENERGY TRANSFER IN PHOTOSYNTHETIC COMPLEXES 

 

2.1 Introduction  

Probably the most unique physical aspects of photosynthetic complexes (PCs) are 

their complex, inter-connected energy transfer processes.  These arise from the special 

arrangements and couplings of different photosynthetic pigment molecules to account for 

specific events during energy collection and eventual charge separation; resulting in a 

wide variation of energy transfer channels, rates, and yields [1-7].  Consequently, energy 

transfer in PCs has been modeled through many different approximations.  For example, 

energy transfer has been modeled as localized Förster donor - acceptor states [8] in the 

weakly coupled B800 dimer ring of purple bacterial LH2 [1, 2].  Energy transfer has also 

been modeled through exciton formation [10], as in the PS II reaction center (RC) [6, 34], 

and through coherent excitonic relaxation in strongly coupled antenna systems, such the 

Fenna-Matthews-Olsen (FMO) light harvesting antenna complex [7].   

Thus, it is important to understand the physical picture of EET for photosynthetic 

systems, which can be described in terms of two limiting cases: weak and strong coupling 

between donor and acceptor molecules (states) [11, 12].  In the weak coupling limit, 

energy transfer can be thought of as hopping process between independent, localized 

states.  In the strong coupling limit, the electronic states cannot be thought of as localized 

on individual molecules, as new intermolecular coherent eigenstates (excitonic states, see 

Section 2.4) are formed by virtue of strong electronic coupling, and EET is thought of as 

a perturbation induced relaxation process between these coherent excitonic states.  
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Photosynthetic pigment systems, however, usually do not lie at the extremes of 

these limiting cases but somewhere in-between.  The ratio of the electronic coupling 

between donor and acceptor pigments, V, and the disorder (inhomogeneous broadening), 

Δ, is an important factor for deciding whether energy transfer occurs through incoherent 

hopping, and can be modeled with Förster and Dexter theories [8, 14] or excitonic 

relaxation [13].  If V/Δ << 1, then it can be assumed that interactions are in the weak 

coupling limit and incoherent hopping energy transfer can be assumed; however, if V/Δ 

>> 1, then strong coupling interaction is present and energy transfer can be “pictured” 

through excitonic relaxation [1]. 

2.2  Förster Energy Transfer Theory 

Energy transfer between weakly coupled photosynthetic pigment molecules often 

can adequately be described through Förster theory [8].  In the Förster model, energy 

transfer is characterized as an incoherent hopping process from an emitting donor 

molecule to an absorbing acceptor molecule in the weak interaction limit (V/Δ << 1).  

The energy transfer rate from this process can be calculated, in the absence of static 

disorder, by using a Fermi-Golden rule approximation [9].  In this approximation, for 

energy transfer to occur from the donor to the acceptor molecule, there must be spectral 

overlap between the donor fluorescence and acceptor absorption along with sufficient 

electrostatic coupling.  This transfer rate, as determined by Förster, is given as  

                                         ∫=
∞

0
)(**2 2

νπ dvJADVADk DADA
h

                                 (2.1) 

where 
2

** ADVAD DA  is the electronic coupling between the donor molecule, D, and 

acceptor molecule, A.  )(νJ is the spectral overlap between the donor emission and the 
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acceptor absorption, normalized to unit area on an energy scale [8].  Also, it is assumed 

that the electronic transition moment does not change upon molecular nuclear motions 

and that the thermalization of molecular vibrations and bath phonons occur on a time 

scale much faster than energy transfer. 

In Förster theory, dipole-dipole coupling can safely be assumed when the 

electronic transitions of D and A are weakly coupled and the distance between them is 

greater than the size of the molecules, i.e. there is no wavefunction overlap [8, 15].  

Usually this corresponds to a separation distance between the donor-acceptor of ~ 1-10 

nm.  If these requirements are met, higher order multipole terms along with 

antisymmetrization (electron exchange) terms can be neglected and the electronic 

coupling matrix element between D and A, in Eq. 2.1 is 

                                     3**
DA

AD

DADA
R

VDAVAD

→→

=≡
μμκ

                                    (2.2) 

where and are the electronic transition dipole moment vectors of D and A, 

respectively.  VDA is dependent only on the electronic wavefunctions since the Born-

Oppenheimer approximation is invoked during the derivation of Eq. 2.1.  RDA is the 

distance between the center of D and the center of A in angstroms.  κ is the orientation 

factor and is defined as:  where the circumflex 

symbol (^) represents the unit vector of the corresponding vector.  Depending on the 

orientation, κ can range in value from –2 to 2 (see Fig. 1).  As shown in Fig. 1, κ2 is 

largest, and the transfer rate is enhanced, when and is in either a head-to-head or  

→

Dμ
→

Aμ

)R)(R(3
^^^^^^

ADADADAD μμμμκ ⋅⋅−⋅≡

→

Dμ
→

Aμ
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Figure 1.  Examples of donor-acceptor dipole orientation factors, κ.  The solid arrows 

represent the dipole vectors of the donor, , and acceptor, , molecules.  The dashed 

line that connects the vectors represents the distance, , between the two molecules.  
It is assumed here, for simplification, that both the donor and acceptor molecules are in 
the same plane.  However, this cannot be assumed for real molecular systems.  
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head-to-tail orientation.  For molecules with random orientations of dipole vectors, κ = 

2/3 [16]. 

The spectral overlap, )(νJ , term in Eq. 2.1 is another result of invoking the Born-

Oppenheimer approximation.  In the Born-Oppenheimer approximation [17], separation 

of the electronic and vibrational wavefunctions is allowed as the nuclear motions of the 

atoms are assumed to be on a much slower timescale compared to the motions of the 

electrons during the optical excitation of either D or A.  Therefore, the vibrational 

transitions of D and A are expressed in 41)()()( νννεν ⋅⋅= DA FJ , where )(νε  is the 

molar decadic extinction coefficient of A in L/(mol·cm), )(νDF is the normalized 

emission spectrum of D, and ν is the wavenumber in cm-1
.  )(νε A and )(νDF  are 

expressed as 

                                            )(
)10ln(3

8)( 2
3

v
hcn

N´
AA μνπνε  

=                                            (

and 

2.3) 

                                                  )(
3

64)( 2
33

νμτπν DD h
nvF =                                            (2.4) 

h is Planck’s constant, d 

t in vacuum and units of cm2/s, n is the refractive index of the solvent, and τ is the 

where N΄ is Avogadro’s constant divided by 1000, c is the spee

of ligh

total dephasing time of D (for the definition of pure dephasing time, see Chapter 3, Sect 

3.1).  )(2 νμD  and )(2 vAμ  are the vibronic transition dipole moments averaged over all 

thermal and vibrational levels, respectively.  Thus, )(νJ  is referred to as the Franck-

Condon factor weighted density of states [16, 18] (for a more detailed description of the  
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Franck-Condon principle, see Chapter 3, Sect. 3.1).  The value of )(νJ  can range from 0 

to 1, with a value of 1 indicating perfect spectral overlap (see Fig. 2A). 

 With terms such as spectral overlap, donor fluorescence, and acceptor emission, 

one may think that energy transfer in Förster theory occurs radiatively, with D emitting a 

photon that is captured by A.  This is incorrect; however, energy transfer in Förster theory 

is a quantum mechanical non-radiative process that occurs between two states that are 

resonant in energy [8, 15, 19].  This resonance condition is required by conservation of 

energy, so that the energy of the system is same after energy transfer as it was before, 

because of this Förster energy transfer is often referred to as Förster resonance energy 

transfer (FRET) [20].  For an illustration of the resonance condition, see Fig. 2B.  

The Förster rate equation (Eq. 2.1) can also be recast [8, 21] in a slightly more 

elegant form  

                                                            
6

01
⎟
⎠
⎞

⎜
⎝
⎛=

R
R

kDA τ
 ,                                                (2.5) 

where R is the distance between the centers of molecules D and A and R0 is expressed as  

                                           ∫ ∗≡ 4
2

45
6
0

)()(
'128

)10ln(9
v

Fdv
Nn

R AD νενκ
π

                             (2.6) 

and is defined as the distance where energy transfer is 50% efficient.  Eq 2.5 shows that 

the energy transfer rate is inversely proportional to the distance between D and A to the 

sixth power and that when R0 = RDA, the energy transfer rate is equal to the total 

dephasing time of D. 

While Eqs. 2.1 and 2.5 are relatively straightforward, there are implications and 

limits with Förster theory that must be recognized.   As mentioned previously, Förster 

theory assumes that phononic and vibrational relaxation, which is on the order of ~ 1 ps, 



www.manaraa.com

56 

occurs on a faster timescale than energy transfer [22].  For sub-picosecond D-A energy 

transfer processes, this assumption cannot be made. 

Förster theory also assumes that D and A are identical molecules, which is not 

always the case when studying photosynthetic pigments or other biological systems.  If D 

and A are not identical molecules, there is an energy gap, ADE − , that is equal to the 

difference between the respective 0-0 electronic transitions, as vibrational relaxation 

occurs on a timescale faster than energy transfer in Förster theory.  Energy transfer is 

usually most efficient when ADE −  is positive and less than Dhv  ( Dhv  is the 0-0 electron

transition energy of D), which allows for increased spectral overlap [23].  This is referr

to as “downhill” energy transfer (see Fig.2A).  Energy transfer can still occur if E

ic 

ed 

is 

negative, though.  However, if this is the 

r vibrationally relaxes to make a pure electronic transition in A.  

 the thermal su

processes must be present for transfer to take place.  This thermally activated energy 

not always valid when the donor or acceptor lineshapes are 

ogeneously broadened.  If the inhomogeneous broadening of the 

e

-1  ~ 50-900 cm-1.  Therefore, when 

studying energy transfer in phot

AD −*

case, there will usually not be enough energy 

after the excited dono

Instead, energy must be obtained from rroundings and/or dephasing 

transfer process is referred to as “uphill” energy transfer (see Fig. 2B). 

Eqs. 2.1 and 2.5 are 

appreciably inhom

lineshape is comparable to the electronic coupling between D and A, then multiple ED-A 

can be present which can result in dispersive energy transfer (non-exponential) kinetics.  

Typically, for photosynthetic pigm nts, spectral lines are inhomogeneously broadened by 

~ 100-300 cm  and electronic couplings range from

osynthetic pigments, Förster theory must often be 

modified to account for inhomogeneous broadening [25]. 
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Lastly, since dipole-dipole coupling is only valid when the D-A distance is greater

than the size of the molecules, closely spaced molecules cannot be modeled in this 

approximation.  When the D-A distances are small en

 

ough for wavefunction overlap, 

electron ee 

r 

cate  an

forbidden transitions; however, these transitions are only weakly allowed and usually 

only significant when the electronic coupling is considered to be stronger.  This 

assumption of higher order electronic coupling terms to trigger energy transfer is referred 

to as Dexter theory [14] and models have been developed to account for these for energy 

transfer between photosynthetic pigment molecules [26-28]. 

2.4.1 Molecular Excitons 

While Förster and Dexter type theories are good approximations for weakly 

coupled pigments, they start to lose their physical meaning for more strongly coupled 

systems where excitations cannot assume to be localized.  Instead, excitons (coherent 

inter-molecular excited states) form in these photosynthetic systems [6, 7, 29].  Here, the 

basic physics of excitons are described, and then, in later sections, applied to energy 

transfer in photosynthetic pigment complexes. 

 exchange interactions must be taken into account for the electronic coupling (s

Fig. 3).  Electron exchange energy transfer occurs in strongly coupled pigment dimers 

and the primary electron donors of RC complexes.  For example, primary charge 

separation in the bacterial RC has been modeled through a Marcus formalism via a 

Dexter coupled electron exchange reaction [23, 24]. However, primary electron transfe

for other photosystems (i.e. PS I and PS II) is more sophisti d, d cannot be assumed 

to follow this approximation.  Interestingly, higher order coulombic terms (e.g. 

monopole-monopole, dipole-quadrapole) can activate energy transfer between allowed-
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Figure 3.  Coulombic energy transfer (Förster) vs. electron exchange (Dexter).  
Coulombic energy transfer is a Förster energy transfer mediated process with electronic 
dipole-dipole coupling, VDA.  For energy transfer via electron
the electronic coupling, V , has an exponential dependence upon the D-A distance, 
exp (-βd), where β is a para
D-A distance. 
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In a periodic, ordered molecular system, such as a molecular aggregate, the 

excitation of a single molecule can be represented by 

                                                 0
2
1'

,
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+ ∑∑ ϕ

mn
exnm

n
n EVH                            (2.7) 

where Hn designates the energy operator of the nth molecule and φ is the wavefunction of 

the system.  Vnm is the interaction energy between the excited molecule and its nearest 

neighbor, second nearest neighbor, and so on; Eex is the molecular excitation energy [10].  

The system wavefunction, φ, is defined as the antisymmetrized product of the individual 

molecular wavefunctions 

                                                                                                            (2.8) 

where is the excited state wavefunction of the nth molecule and  are the ground 

state wavefunctions of the other molecules in the aggregate [10].   

When the interaction energy in Eq. 2.7 is large enough, the excitation is no longer 

localized on the αth molecule but is transferred to the other molecules in the crystal, 

spreading as an excitation wave, which travels as an electrostatically bound electron-hole 

pair that eventually recombines and annihilates.  This collective excitation is referred to 

as an exciton.  Excitons are defined between two limiting cases, where the electron-hole 

pair is either tightly bound (Frenkel exciton) or loosely bound (Mott-Wannier exciton) 

[10].  In Frenkel excitons, the excited electron is located on the same molecule or atom 

along with the hole.  However, as the excitation travels as a wave through the crystal or 

ordered aggregate, the electron-hole pair “hops” from molecule to molecule (see Fig 4A).  

Frenkel excitons are the type of excitons that are discussed in this section, and usually 

∏
≠

=

mn
m

g
m

ex
nex ϕϕϕ

ex
nϕ g

mϕ
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occur in molecular crystals and ordered aggregates, e.g. photosynthetic pigment 

complexes [6, 7, 29].  They are often referred to as molecular excitons.  In Mott-Wannier 

excitons, the electron and hole are much farther apart, with distances larger than that of a 

lattice constant, and occur in ionic crystals (such as semiconductors and dielectrics) with 

a high dielectric constant.  In terms of band theory, a Mott-Wannier exciton corresponds 

to an excitation where an electron is promoted from a filled valence band to an empty 

conduction band [30-32] (see Fig 4B). 

Since an excited state is not localized in molecular excitons, the wavefunctions 

defined in Eq. 2.8 are not stationary states.  Instead, the system wavefunction can be 

represented as a superstition of all the wave functions in the aggregate in the Bloch 

waveform:  

                                               ∑−=
n

ex
nex iN )knexp()( 2/1 ψψ k                                      (2.9) 

where wavevector k indicates the excitation wave in the crystal and spans N discrete 

values 

                                                         ∑
=1i i

=
3

ib2k iN
νπ ,       

22
i

i
i NN

≤<− ν                    (2.10) 

 

with three noncoplanar basis vectors a1, a2, a3, edges N1a1, N2a2, N3a3, and 

only one molecule per unit cell (for simplicity) so that the total number of molecules in 

the unit cell is N = N1N2N3. 

 Then, if we let the ground state wavefunctions of the aggregate be represented as 

and bi are the basis vectors of the reciprocal lattice, which are orthonormal to the basis 

vectors of the lattice (biaj = δij).  It is also noted that the unit cell here is assumed to be a

parallelepiped 
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Figure 4.  (A) Schematic of a Frenkel exciton.  The electron (e-) - hole (h+) pair is tig
bound and as it travels through the molecular lattice, with an electron-hole separation 
distance less than the unit cell length.  However, the excitation is considered a 
superposition of all the wavefunction in the lattice (Bloch form) and is thus considered to 
be delocalized over all the molecules in the lattice.  (B) Schematic of a Mott Wannier 
exciton.  The electron-hole pair is loosely bound, which results in electron-hole 
separation distances greater than the unit cell length.  Mott-Wannier excitons are not 
observed in organic molecular systems due to their low dielectric constants.  For Mott-
Wannier excitons to form, a large dielectric constant is needed so that electron hole 
interaction is sufficiently weak to allow large electron hole separation distances [30]. 
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                                                             ∏=
n

g
ng ϕψ                                                 

difference between the excited state and ground state energies, which is given by: 

                                                    k)()k( exexexex LDE

    (2.11) 

the excitation energy for an excited state in the aggregate can be determined by taking the 

++= ε                                     (2.12) 

where exε is the excitation energy of one molecule in the aggregate, Dex is the change in

interaction energy of one molecule with

 

 all other molecules from the ground to excited 

state, 

                             
2222' ggg

m

ex VVD ϕϕϕϕ −=∑                       (2

and Lex is the trans

mnmnmnmnex .13) 

ition of excitation between molecule n and all other molecules.  

)}mn()k( −= ∑Lex                      (2.14)                                kexp{' iV ex
n

g
mnm

ex
m

g
n

m
ϕϕϕϕ

ut 

ective excitation of all molecules in the aggregate.  Eq 2.12 is also a function of N 

different values of the wave vector k, resulting in a non-degenerate exciton band with N 

sublevels.   

xcitonically Coupled Dimer 

an be thought of as the building block for more complex 

Eq 2.12 specifically shows how a single excitation is not localized on one molecule, b

is a coll

2.4.2 E

Coherent molecular excitons can also form in linear or cyclic molecular 

aggregates where there is short-range, but no long-range periodic order, such as strongly 

coupled chlorophyll molecules in PCs.  While there are many types of chlorophyll 

molecule aggregates, the simplest is the excitonically coupled dimer [33].  The 

excitonically coupled dimer c

cyclic and linear photosynthetic aggregates.  



www.manaraa.com

63 

A dimer in this sense refers to a pair of electrostatically interacting chlorophyll 

pigment molecules (either identical or non-identical) that are spatially separated, and not 

necessarily in van der Waals contact.  For two identical molecules, though, the 

Hamiltonian due this interaction is 

                                              g
gggg EVHH =++ 212121 ϕϕϕϕ                                 (2.15) 

where the ground state wavefunction of the dimer is taken to be a product of the 

molecular wavefunctions, as in molecular crystals: 

                                                                                                                  (2.16) 

and the ground state energy of the dimer can be expressed as  

                                                                                                     (2.17) 

Thus, the coupling between the two molecules shifts the ground state energy of the dimer 

by 

gg
g 21 ϕϕψ =

g
gg

g DE ++= 21 εε

gggg
g VVD 212100 ϕϕϕϕ≡≡ .  Dg is often referred to as the ground dispersion 

energy. 

The excited state wavefunction of the dimer can be represented as  

                                                   [ ]exggex
ex 21212

1 ϕϕϕϕψ ±=                                        (2.18) 

or more simply by 

                                                       [ ]21

2
1

exexex ψψψ ±=                                             (2.19) 

                                                                                                                                   

                                                                                                                                   

where the wavefunction is both normalized and orthogonal. 

gex
ex 21
1 ϕϕψ =

exg
ex 21
2 ϕϕψ =
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Then the excited state Hamiltonian for the excited dimer can be written as  

                                                  exexex EVHH =++ ψψ 21                                   (2.20) 

ly by putting Eq. 2.20 in 

eterminant matrix form)   

                                           

  

By expanding the wavefunction (which can be seen most clear

d

 0
22221

12111 =
−+

−+

ex
ex

ex
ex

EVV
VEV

ε
ε                              (2.21) 

nd if we recogniz  that exDVV ≡≡ 2211  and resVVV ≡≡ 2112a e , the matrix can be 

iagonalized and the Hamiltonian solved for the eigenenergies, which ven by:  

                                                                                            (2.22.a) 

                                                                                             (2.22.b) 

ith 

                                 

d is gi

 resex
ex

ex VDE ++= 1
1 ε  

 resex
ex

ex VDE −+= 2
2 ε  

w

 exggexgexexg
ex VVD 21122112 ϕϕϕϕϕϕϕϕ ==                         (2.23) 

                                  gexgexexgexg
res VVV 21122112 ϕϕϕϕϕϕϕϕ ==                         (2.24) 

 

 

e 

oulomb coupling responsible for energy transfer between the two pigment molecules, 

hich is clearly shown in Eq. 2.24.  Dex is the excited dispersion energy, and like the 

round dispersion energy, shifts the excited state energy.  Together, Dex–Dg is the solvent 

shift or shift in excitation energy that occurs when a molecule goes from the gas to  

Thus, it is easy to see that the excited excitonic band is split into two non-degenerate 

bands (Eqs. 2.22.a and 2.22.b) by an energy separation of 2Vres (Davydov splitting) [10, 

33] and are delocalized over both molecules.  Eqs. 2.22.a and 2.22.b also show that the

energy difference between the ground and excited states (transition energy) has dropped

compared to a single molecule.  Vres is the resonance transfer matrix element and is th

C

w

g
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condensed phase [16, 33].  The solvent y causes a decrease in excitation  shift usuall

energy, yielding a red shift of the excitonic absorption bands (see Fig 5). 

res

th and absorption

c 

s [33] 

    

Since the Coulomb coupling of V  is usually considered in the dipole-dipole 

approximation, the relative orientation of the molecular transition dipole moment vectors 

in the dimer determines the oscillator streng  intensity of each excitonic 

state.  In the case where the dimer consists of two identical molecules, its transition 

dipole strength, Idim, from the ground to the one quantum excited state, for each excitoni

state, i

 )cos1()(
2

21dim θψμμψ ±=+=± molexg II                                                    (2.25) 

where μn=1,2 is the dipole moment operator of the respective molecules, Imol is the  

molecular dipole strength, and θ is the angle between the molecular transition dipole 

moment vectors.  The  + and - labeling refers to the split excitonic states of the dimer 

e magnitude/sign of Vres and dipole (oscillator strength) of the excitonic 

 al 

ce δ, 

(Eqs. 2.22.a and 2.22.b, respectively).  For illustration, possible orientations of the 

transition dipole moment vectors in an excitonically coupled dimer of chlorophyll 

pigment molecules are diagrammed in Fig. 6, along with how these orientations 

determine th

bands. 

In photosynthetic complexes, pigment molecules experience different loc

environments due to the surrounding protein matrix.  Therefore, it cannot always be 

assumed that the site energies of pigment molecules will be the same.  If a dimer is 

composed of two molecules with inequivalent excitation site energies of differen

then their energies can be “rezeroed” to δ/2 and -δ/2, respectively.  The Hamiltonian  
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Figure 6.  Schematic of excitonic band dipole orientations, oscillator strengths, and 
ftmost column, the orientation of the molecule le 

moments are shown.  The squares represent molecular planes and the solid arrows, the 
n dipole moment vectors.  The excitonic coupling between the molecules is 
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matrix for this dimer is then 

                                                   0
2/

2/
=

−−
−

exres

resex

EV
VE

δ
δ

                                  (2.26) 

where the Dex term has been omitted for simplicity.  After diagonalizing Eq. 2.46, the 

exciton energies are  

                                                      2

22
1

2 δ
δ resV

E ++=                                           (2.27.a) 

                                                      

ex

2

22
1

2 δ
δ resV

E +−=                                           (2.27.b) ex

 >> δ, 

imer 

(Eqs. 2    If 

 and 

g beyond the simple excitonic dimer leads to ordered systems, such as 

linear and cyclic aggregates, where the excitonic and environmental interactions of the 

chlorin molecules are more complex [33, 35].  As before, a good example is the PS II RC 

obacteria and green plants, a wish-boned shaped aggregate of 6 Chls and 2 Pheos, 

pared 

It can be easily seen that there are two limiting case for Eqs. 2.27.a and 2.27.b.  If V

2.27.a and 2.27.b approach the energies and splittings of the identical molecule d

.22.a and 2.22.b) where the exciton states are delocalized over both molecules.

V << δ, 2.27.a and 2.27.b approach the energies of the uncoupled molecules, where they 

are split by δ/2 and the excited states are localized on the individual molecules. 

2.4.3 Photosynthetic Excitons - Coherent Excitons in Photosynthetic Aggregates

Complexes 

 Movin

of cyan

that is neither cyclic nor linear, where the excitonic couplings are weak when com

to the energy disorder due to local protein environment effects.  This results in the 

primary donor state being poorly defined and not always localized on one particular 

chlorin molecule.  
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 In such aggregates, the excited state Hamiltonian is:  

                                                      ∑∑ +=
mn

nm
mn

nm
ex
n VH

,,

'δε                                  

(where 

     (2.28) 

the excited state dispersion energies are discarded for simplicity) and the 

ormaln ized excited state wavefunctions for the coupled chlorin molecules are 

                                                        ∑ ∏
≠

=

mn

g
m

ex
nnex ϕϕϕ ,                                           (2

By then taking the wavefunctions in Eq. 2.29 and expanding them about the Hamiltoni

in Eq. 2.28 the following result is obtained 

n m
.29) 

an 

                                        ex
m

mn
nm

ex
n

n

ex
n

ex
n

ex
n VH ϕϕϕϕε ∑∑ +=

,

'                         (2.30) 

which shows that the Hamiltonian depends only on the excited state wavefunctions and 

energies.  This expansion generates a nn × matrix and can be diagonalized to solve for 

the excitonic energies ( αE ) and wavefunctions ( α ). 

 The excitonic wavefunctions are simply 

                                                           ∑=
n

ex
nnc ϕα α                                               (2.31) 

where the excited state molecular wavefunctions serve as a basis for the normalized and 

orthogonal excitonic wavefunctions, and the coefficients determine the contribution of 

each molecular wavefunction to the excitonic band.  The coefficients can also be used to 

determine the excitonic transition dipoles 

                                                            ∑=
n

nnc μα ˆˆαμ  ,                                               (2.32) 
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where nμ̂

th con

is the transition dipole vector for chlorin molecule n.  Therefore, the oscillator 

reng tribution of each chlorin for each excitonic band, or occupation number, is 

etermined by 

st

2
ncαd .  The delocalization of the excitonic bands is given by  

                                    
∑

=

n
nc

N 4
1

α
del                                                                      (2.33) 

here Ndel represents the number of chlorin molecules per excitonic state α [35]. 

While the above equations are relatively straightforward, determination of the 

hotosynthetic excitonic spectra is not so easily done.  Modeling of such excitonic 

ectra by Jankowiak et al. [6, 35] and Durrant et al. [36, 37] for the PS II RC, and 

artsma et al. [38] for the FMO antenna complex, has shown a marked difference to the 

bserved experimental spectra, regarding overall band shapes and widths.  In references 

, the chlorins are all assumed to have identical site energies, which in a first-order 

pproximation is valid due to the width of the overall excitation spectrum for both 

omplexes (~ 500 cm-1), and a dipole-dipole coupling mechanism.  However, the site 

nergies are most likely not identical and along with the electrostatic coupling 

distributing the oscillator strength among the chlorins, complicates the chlorin 

 and motional narrowing via delocalization of the excitonic bands [35].   

 In addition, the arguments above assume that the structure of photosynthetic 

complexes is precisely known, this is usually not the case.  High-resolution X-ray 

w

 

p

sp

A

o

[35-37]

a

c

e

re

transition energies and strengths, which cannot be determined experimentally.  The 

broadening of the excitonic bands also plays an important role, since the homogeneous 

broadening depends on the exciton-phonon coupling strength and the inhomogeneous 

broadening is determined by the amount of disorder induced by the surrounding protein 

matrix
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crystallography structures Å) [39] are not available for most PCs [40-42].  

herefore, the precise positions of the chlorin molecules to calculate the electrostatic 

oupling are not available, and, more importantly, since the chlorin-chlorin distances are 

ot adequately defined, what coupling approximation should be used, e.g. dipole-dipole, 

ll Coulomb, etc.   

.4.4 Energy Transfer via Relaxation in Photosynthetic Excitons 

As discussed previously, when V/Δ >> 1 the Condon approximation breaks down 

nd the treatment of individual photosynthetic pigments as localized donor and acceptor 

igenstates that transfer energy through an incoherent hopping process is no longer valid.  

stead, energy transfer occurs through coherence and relaxation of excitonic states.  In 

is “exciton picture”, the energy transfer can be calculated using a Fermi-Golden rule 

xpression, like the Förster equation, that is derived from first-order perturbation th

he perturbation in excitonic relaxation, however, is not the electronic coupling (V)

örster theory, but the electron-phonon coupling (dynamic disorder) [1, 25].  

Since the Condon approximation is no longer valid, the electronic wavefunction 

oordinates are no longer independent of the vibrational wavefunction coordinates and 

e excitonic Hamiltonian must be modified.  The electron-phonon perturbation can be 

tion 

( 6.1≤

T

c

n

fu

2

a

e

In

th

e eory.  

T , as in 

F

c

th

expressed by partitioning the excitonic Hamiltonian into 0H , the zero order contribu

(Eq. 2.28), and HΔ , the perturbation operator,  

                                                             HHH ex Δ+= 0                                   (2.34) 

he perturbation operator, also referred to as

           

 the non-adiabaticity operator or Born-

ppenheimer correction term, takes into account the dependence of the electron-phonon 

teraction potential, Vint, for a fixed configuration of the phonon “promoting mode” 

T

O

in
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coordinates, 0
pq , and is responsible for energy transfer via scattering between exciton 

levels. It is written as  

                                                        ∑ ⎟
⎟
⎠

⎜
⎜
⎝ ∂

=Δ
p p

int
p q

qH                                            (2.
⎞⎛ ∂

0

V 35) 

where the promoting modes have a frequency of ωp , and are not necessarily required to 

 

 The perturbation operator then enters into the Fermi-Golden rule rate expression 

be Franck-Condon active [25, 44].

as 

                                               )(2
I

p 0p

int
pF ΩΨ⎟

⎠

⎞
⎜
⎝

⎛ ∂
Ψ ∑ ρπ V

q
h

                           (2.36) 

where ∫ Ω=Ω
∞

0
)()( Jdωρ and is referred to as the spectral density of states; FΨ and I

2

⎟⎜ ∂q

Ψ are 

the fi onic excited state wavefunctions, respectively.  Ifnal and initial electr  it is 

recognized that the phonon coordinate, pq , can be written in terms of ladder operators 

[45] 

                                                     )(
2

2/1

p

++⎟
⎠

⎞
⎜
⎝

⎛
= bbq

ω
h                                         (2.37) 

( +
pb and pb are the creation and annihilation operators, respectively) then Eq. (2.36) can be 

expanded about the appropriate vibrational wavefunctions to give 

                                     

ppp ⎟⎜

∑ −Ω+Ψ⎟
⎟
⎠

⎜
⎜
⎝ ∂

Ψ
p

n
q

)(1~
pp

2

I
p

int
F

p
ωρ

ω
 ,               

⎞⎛ ∂V

0

π  (2.38) 
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since 1~1
2

+=++ + nnbbn , where 1, +nn  areppppp pp  the vibrational 

wavefunctions for the promoting mode(s) and  is the thermal occupation number, 

]  [45].  The spectral density in Eq 2.38 is reduced by 

p
~n

[exp(h 1
p 1)/ −−kTω pω  due to one-

is one-phonon absorption (phonon emission; if there p
~n ), the spectra ity is l dens

increased by pω [16].  

 To determine explicit expressions for the exciton-phonon interaction (perturbation 

operator, HΔ ) in Eq 2.41, the excitonic Hamiltonian (Eq. 2.28) is expanded in a Taylor 

series about the lattice coordinates { }0=R , which the phonon coordinates, pq , are 

xpansion all the linear terms are collected,

terms that describe harmonic phonons.  This results in the following equation [10, 46] 

, the zero-order contribution (see above), determines the crude adiabatic energies 

for the exciton bands and is written as  

                         

dependent upon.  In this e  along with quadratic 

                    )()()()()(ex            (2.39) )2()1(0 RHRHRHRHRH PHEXPHEXPH −− +++=

)(0 RH

[ ] mn
mn

nmnn
ex
n

ex
n BBRVBBRDRH ++

n
∑∑ ++=
,

0 )()()( ε  ,                   (2.40) 

where the excited state dispersion energies are included, in Eq. 2.40 

)()( , RDRD
nm

nmexn ∑
≠

=  and the expanded Hamiltonian is expressed in terms of ladder 

operators.  ),(RH

ex

PH  the phonon Hamiltonian, is 

+
qq)()( bbRH

s
sPH ∑=

q
qωh  ,                                       (2.41)                                                  
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where )(qsω  is the phonon frequency onon branch with wave vector q for the s-th ph .  

Eq. 2.41 does not describe high frequency phonons that occur via intramolecular 

vibrations.  )()2,1( RH PHEX − are the exciton-phonon coupling expressions responsible for 

exciton relaxation and which enter into Eq. 2.38 as the perturbation operator terms. 

                      ∑∑ + ⎥⎢ ⎟
⎟
⎞

⎜
⎜
⎛ ∂

+⎟
⎟
⎞

⎜
⎜
⎛ ∂

=)1( )( j
nmj

mj
nmj

nmnPH
VRVRBBRH      

=
−

⎥⎦

⎤

⎢⎣

⎡

⎠⎝ ∂⎠⎝ ∂

6

1 00, j mnmn
EX

RR
           (2.42) 
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⎤⎞⎛⎞ exex
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⎢
⎣

⎡

⎟
⎟
⎠

⎜
⎜
⎝ ∂

∂
+⎟

⎟
⎠

⎜
⎜
⎝

⎛

∂

∂
=

6

1 00,
)2( )(

j
j

m

nmj
mj

n

nmj
nm

mn
nPHEX

R
D

R
R

D
RBBRH                (2.43) 

In Eqs. 2.42-3,  and  indices represent the translational and rotational 

degrees of freedom of the excited molecule, respectively.   

It is more transparent, though, to switch terms from a localized 

3,2,1=j 6,5,4=j

)()2,1( RH PHEX −

representation to an exciton representation that also contains phonon +b and b ladder 

operators.  This is accomplished using the following relations [46, 47] 

                                               nkk ⋅−− ∑= i
n eBNB )(2/1  ,                                      (2.44)

                                             

k
 

where B(k) is the delocalized exciton operator with wave vector k, and 

nq

q
q∑= s

s j

s
n ee

I
NR )(  ,                       

where N is the number of sites, )(q  is the phonon coordinate associated with m

q ⋅− ijj q )(2/1        (2.45) 

ode qs, 

and Ij is the moment of inertia associated with the j-th degree of freedom.  Eqs. 2.42 and 

2.43 then become: 

                         

sq

))(,()()()(
,

2/1
)1(

+
−

+−
− ++= ∑ sss

s
PHEX bbFBBNRH qq

qk

qkkqk                (2.46) 



www.manaraa.com

75 

                            ))(()()()( 2/1
)2(

+
−
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− +=

,
∑ sssPHEX bbBBNRH qqqkk χ  ,                   (2.47

sqk

) 

where 
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ex
mj

R
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D m)q

with ( ) 2/1)(2/),( −= Is qq ωα h .  Eqs. 2.46 and 2.47 both assume that there is only one 

+= )(),()( ss ees qqq αχ                 (2.49) 

molecule per unit cell, and thus only one exciton branch.  Thus, the final expression for 

energy transfer is obtained trivially by inserting these expressions into Eq. 2.38, which 

contain the delocalized excitonic and nuclear wavefunctions. 

 It is noted that Eqs. 2.46 and 2.47 imply two limiting cases for exciton-phonon 

scattering, when >>  and when < .  If the former is 

the limiting case, the modulation of the V term is dominant, and the exciton-phonon 

coupling is considered to be weak and non-local.  In this case, exciton scattering, and thus 

energy transfer, occurs from one k-value to another (see Fig. 7).  If the latter is the 

limiting case, the modulation of the D term is dominant, and the exciton-phonon coupling 

is considered to be strong and local.  In this case, exciton scattering occurs, but there is no 

change in k-value and energy transfer from one band to another does not occur.  Instead, 

this modulation of the molecular energy D term shifts the equilibrium of the 

intermolecular coordinates, deforming the lattice around the excited molecule.  If the 

electron-phonon coupling is strong enough, this deformation can localize or even trap the 

exciton.  These self-trapped excitons should not be viewed as being “localized" in space 

s j

)1(PHEXH − )2(PHEXH − )1(PHEXH − )2(PHEXH −
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and time, but rather moving through the lattice at a slow velocity.  Self-trapped excitons 

in photosynthetic complexes [48, 49] are analogous to polarons in molecular crystals 

[30].   

citon relaxation can also be modeled through a density matrix 

picture approach, which allows for a time-evolution description of the coherence of the 

excitonic matrix elements.  Thus, the downward energy cascading between excitonic 

can be followed through time.  field 

Alternatively, ex

bands This approach is specifically called Red

relaxation theory [50, 51].  In Redfield theory, the density operator ρ is projected into

ace that describes the electronic excitation degrees of eedom but 

reduces the density matrix equation to [1, 33] 

 a 

reduced Liouville sp  fr

averages out the phonon degrees of freedom.  A second-order expansion of the 

Hamiltonian is then performed to determine the exciton-phonon Hamiltonian, which 

                                        [ ] ∑−
−

=
pq

nm tHitd
)(,

)(
ρρ pqpqnmnmdt ,0

ρ
R

h
                       (2.50) 

where αβρ  is the density matrix ope or states rator f α and β , respectively.  The firs

on the R.H.S. in Eq. 2.50 details the coherence of the system, which depends on the zero-

order Hamiltonian (see Eq 2.30), while the second term on the R.H.S. details the 

t term 

ss due to the system-bath interaction described by the Redfield tensor 

The Redfield tensor is dependent on the electron-phonon coupling expressions 

from the density ma  is the rate 

rom the mth nth ate; 

of the coherence between the mth and nth states; and is th herence transfer term 

between p and q states to n and m states. 

coherence lo R.  

pqnm,R

46-7 and connects all  Eqs. 2. trix elem

 to the 

R

ents.  

 st

pq

mmnn,R

nmnm,R

e co

constant for the population transfer f  is the dephasing 

nm,
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The formal solution to Eq 2.50 is )0()( ρρ Ltet = where L is th

ver, for a system with 

e Liouville operator 

and t is time [51].  Howe N  elements, the Liouville tensor has 2N

elements.  Therefore, the diagonalization algorithm

 

l to  scales to , which is impractica

solve for systems with more than a few degrees of freedom.  Instead, an iterative 

approach can be used where the explicit form of the Redfield operator is not needed [52, 

Runge-

hms. [56, 57] 

A formal derivation and explanation of Redfield relaxation theory will not be 

given here, however.  The derivation, while straightforward, is lengthy and detailed.  

rch in this thesis does not use Redfield theory to describe energy transfer, 

due to the frequency domain spectroscopy techniques used.  Therefore, any interested 

readers are directed to the following outstanding reviews of Redfield relaxation theory 

tion to energy transfer in photosynthetic light harvesting antennas and 

reaction center complexes [50, 51, 58, 59].   

 6N

53].  This approach is based on the short-iterative Arnoldi procedure [54, 54] and is 

independent of the vibronic basis size and converges much faster than traditional 

Kutta algorit

Also, the resea

and its applica
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CHAPTER 3 – HOLE-BURNING AND SINGLE-MOLECULE SPECTROSCOPY 

 

3.1 Spectral Lineshape Theory 

 Optical excitation of a molecule involves absorption of a quantum of light energy 

which promotes an electron from a ground state (Eg) to a higher quantized electronic 

energy level (Eex).  This excited electron can then return to the ground electronic state by 

emitting a photon or through radiationless energy decay.  Since this excitation-decay 

process is quantum mechanical in nature, the Heisenberg uncertainty principle (H.U.P.) 

must be satisfied.  The familiar form of H.U.P. is given by  

                                                               
π2
hpx ≥ΔΔ                                                       (3.1) 

where x is the position of the electron, p is its’ momentum, and h is Planck’s constant [1].  

However, for optical spectroscopic processes, this relation can be recast in a more useful 

form as  

                                                                
π2
htE ≥ΔΔ                                                      (3.2) 

where E is the energy of the electron and t is the time the electron spends at this particular 

energy [1].  It can be seen then that when the electron is promoted to a higher quantum 

energy level, the energy cannot be precisely known.  Along with this, the time that this 

electron spends in this higher energy level cannot be precisely known; so to determine 

either the energy or time of a particular transition more precisely sacrifices the accuracy 

of the other.  Therefore, the spectral lineshape of an optical transition is necessarily 

broadened by this condition, which is called uncertainty or homogeneous broadening [2].   
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Figure 1.  Natural or homogeneous lineshape of a ZPL [3].  The homogeneous profile is 
Lorentzian and carries a full width at half maximum (FWHM) of Γ= 1/2πcT1, as defined 
by the Heisenberg uncertainty principle (Eq 3.2). 
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This is often referred to as the natural or homogeneous lineshape of an optical transition 

(see Fig. 1).   

For guest-host systems, such as molecular impurities in solid-state matrices (e.g. 

crystals, glasses, proteins), the homogeneous linewidth of an optical transition for a guest 

molecule at the zero point temperature (T = 0) has a characteristic time, referred to as the 

energy relaxation time.  From Eq. 3.2, this relationship can be expressed as [3] 

                                                        
12

1)0(
cTπ

=Γ                                                      (3.3) 

where  is the homogeneous linewidth in cm-1 at T = 0, c is the speed of light, and T1 

is the relaxation time.  Unlike gas-phase optical transitions, Doppler broadening is not 

present since the guest molecule is attached to mass of the host matrix [3].  At T = 0, the 

homogeneous linewidth is appreciably narrow (10-4-10-3 cm-1) with a relaxation time of 

T1 ≈ 10-7-10-8 s [3].  At T ≠ 0, the homogeneous lineshape begins to broaden due to 

dephasing processes induced by thermally activated phonon modes of the host matrix. 

)0(Γ

The dephasing induced by phonons results from quasi-elastic scattering of a 

phonon by the molecular impurity, which changes the phonon’s direction of propagation 

and a negligible change to its energy.  For the impurity, this scattering results in a change 

in the phase of the excited electronic state wavefunction so that the time dependent part, 

exp(iEext/ ), acquires an additional random phase component, δ, and changes to 

exp[(iEext /h)+i δ] [3].  Consequently, the lifetime of the excited quantum state is 

shortened, and the spectral linewidth carries additional uncertainty broadening.  

Therefore, at T ≠ 0 the homogeneous linewidth must be described in terms of the energy 

relaxation and dephasing times: 

h
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where T2 is the coherence time and  is (pure) dephasing time of the excited electronic 

state [4].  For electronic transitions from one quantum state to another where no phonons 

are created or destroyed, no additional dephasing occurs.  The homogeneous lineshape 

for these transitions is called the zero-phonon line or ZPL [3].  ZPLs can either result 

from purely electronic transitions or from vibronic transitions (simultaneous electronic 

and vibrational transitions) (see Fig. 1). 

*
2T

For transitions from one quantum state to another where phonons are created or 

destroyed, through coupling of the impurity molecule to the phonon modes of the matrix 

(electron-phonon coupling), a broad continuous band, called the phonon sideband, is seen 

along with the ZPL with a characteristic width of ΓPSB.  The strength of the phonon side 

band (PSB) can be explained through the Franck-Condon principle (see Fig. 2) [3].  For 

weak electron-phonon coupling, the geometry change of the impurity molecule is 

relatively small in the excited electronic state and thus the normal lattice coordinate of the 

host matrix is also small, leading to a weak PSB feature.  For strong electron-phonon 

coupling, the geometry change of the impurity molecule is relatively large in the excited 

electronic state and thus the normal lattice coordinate of the host matrix is also large, 

leading to a strong PSB feature.  Large geometry changes between excited and ground 

state molecular configurations also increase the probability of vibronic transitions, which 

can lead to very strong electron-phonon coupling due to pseudo-localized phonons of the 

probe molecule.  Therefore, depending on the mixed solid system, the PSB structure can  
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Figure 2.  Schematic of the electron-phonon coupling of a guest impurity molecule in a 
low temperature solid host matrix via the Franck-Condon principle [9].  After excitation 
by hν, the molecule makes a transition from the ground electronic state, S0, to the excited 
electronic state, S1.  The lattice coordinate displacement, Δq, determines the overlap 
between the ground and excited state vibrational wavefunctions; the stronger the overlap, 
the stronger the PSB feature.  Eel  and Ev represent the pure electronic and vertical 
transition energies, respectively.  and  are the ground and excited state 
vibrational energy levels, respectively. [9] 
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be due to delocalized phonons of the host or pseudo-localized phonons associated with 

the probe molecule [5, 6].   

More specifically, the PSB arises from the linear electron-phonon coupling [7].  

The interaction of phonon quanta with the molecular impurity can be described using a 

harmonic oscillator model and be written in the following form [8]: 

                                                    j
ij

iij
i

ii qqBqAV ∑∑ += .                                           (3.5) 

where the first term in Eq. 3.5 describes the linear electron-phonon coupling with Ai 

being the linear coupling coefficients while the second term describes the quadratic 

electron-phonon coupling with Bij being the quadratic coupling coefficients.  The 

quadratic electron-phonon coupling describes the energy change in the excited state due 

to the change in the normal oscillator frequencies during an excitation.  For no coordinate 

change during excitation, or when i = j, the quadratic electron-phonon coupling gives rise 

to homogeneous broadening of the ZPL (see above).  When the normal oscillator 

frequencies change during excitation, or i ≠ j, the quadratic coupling describes the energy 

change due to the mixing of lattice normal coordinates [9].  This coordinate mixing is 

referred to as normal coordinate (Dushinsky) rotation [10].    

The spectral intensities of both the ZPL and PSB features can be characterized 

using the Debeye-Waller factor (DWF), α  (also known as the FC factor) [6, 11, 12]:      

                                                        
PSBZPL

ZPL
II

I
+

=α                                                     (3.6) 

where IZPL and IPSB are the relative integrated intensities of the ZPL and the PSB, 

respectively.  At T ~ 0 in the harmonic oscillator model for N phonon modes, the DWF 

factor is given by 
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                                                           )exp( S−=α  ,                                                      (3.7) 

where S is the dimensionless Stokes shift (also known as the Huang-Rhys factor) and is 

expressed as [11]: 

                                                     ( )∑ Δ==
i

i
ii qMTS 2

2
)0(

h

ω .                                     (3.8) 

In Eq. 3.8, M and ω i are the reduced mass and frequency of the phonon mode i, 

respectively, and Δqi is the change in equilibrium of lattice normal coordinate qi.  From 

Eq. 3.8, we see that .  Thus, S can be used to characterize the strength of the 

electron-phonon coupling.  In general, electron phonon coupling is weak when S < 1.  For 

S > 1, the electron-phonon coupling is strong [6, 12].  

2)( iqS Δ∝

 The DWF is temperature dependent.  It decreases rapidly and, usually, 

monotonically as temperature increases, i. e. increasing temperature results in a rapid 

decease of ZPL intensity.  The temperature dependent DWF is given by [13]: 

                                                    
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−= ∑

N

i
inST )12(exp)(α  ,                                    (3.9) 

where thermal occupation number, [ ] 11)/exp( −−= kTn ii ωh , is the average number of 

phonons of mode i at temperature T.  α(T) reaches its maximum value at very low 

temperatures ( T  ≤ 10 K for most organic glasses). 

3.2 Inhomogeneous Broadening 

The preceding section discussed homogeneous lineshapes for a single impurity 

molecule in a host matrix.  An ensemble of impurity molecules, however, will show a 

different characteristic spectrum.  If the host matrix is not perfectly ordered so that each 

molecule experiences an identical environment, each molecule will experience a different 
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local nanoenvironment.  These different local environments rise from the particular 

inhomogeneities in the host matrix (e.g. point, linear, surface defects; stress field 

variation; irregular molecular ordering) that shift the ground and excited states of the 

guest impurity molecules, and in solid matrices this is always the case [14].  Therefore, 

the coupling of each impurity molecule to the host matrix will be different and result in a 

distribution of homogeneous lineshape frequencies.  This phenomenon is called 

inhomogeneous broadening [14, 15].   

In order to characterize the inhomogeneous broadening it is convenient to 

introduce the inhomogeneous distribution function (IDF), )(ωG , which is most 

commonly assumed to be a smooth Gaussian shaped function [14, 15, 16].  The 

bandwidth (Γinh) of the IDF is always larger than the homogeneous width, Γ(0).  Even for 

impurity doped Shpol’skii systems where the guest molecules are embedded in a highly 

ordered crystalline host, the disorder is large enough that Γinh ≈ 1-5 cm-1 [14].  For glasses 

and proteins the magnitude is significantly greater with Γinh ≈ 100-400 cm-1, a factor of 

105-106 greater than Γ(0) [15].  To see the effects of inhomogeneous broadening, one 

only needs to convolve the single site spectrum of one molecule, Γ(T) + ΓPSB, with 

)(ωG .  As seen in Fig. 3, this convolution results in broadening of the ZPL and PSB 

features in a Shpol’skii host system but a complete elimination of any discernable 

spectral features in a glassy host system.  This convolution consequently gives for the 

ensemble spectrum a characteristic width of about Γinh + Sω, where ω m is the mean 

phonon frequency and S is the Huang-Rhys factor as defined above [17, 18, 19]. 

An inhomogeneous impurity absorption band is therefore a superposition of two 

parts: a continuous band that is the sum of all the individual PSBs and a sum of sharp  
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Figure 3.  Schematic of homogeneous vs. inhomogeneous broadening.  In frame (A), 
guest impurity molecules are in a perfect host lattice.  Homogeneous lines (Γhom) overlap, 
resulting in an absorption spectrum with a linewidth = individual ZPL.  In frame (B), 
guest impurity molecules are in a disordered host lattice, so that each impurity molecule 
absorbs at different frequency.  This leads to a distribution of ZPL absorption frequencies 
and thus, the impurity absorption band is inhomogeneously broadened. 
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ZPL lines, both of which are hidden by the inhomogeneous spectrum.  Since the 

inhomogeneous band obscures the detailed ZPL and PSB information, methods of 

selective excitation at low temperature are needed.  Numerous site selective 

spectroscopies have been developed to overcome the effects of large inhomogeneous 

spectral broadening, such as fluorescence line narrowing (FLN) [9, 28], spectral hole-

burning (HB) [20-24], photon echo (PE) [25-28], and single-molecule spectroscopy 

(SMS) [33, 34].  In particular, spectral HB and SMS provide extremely high spectral 

resolution and sensitivity along with being powerful tools for probing the structural 

disorder and molecular dynamics of amorphous glassy solids.  This is especially true for 

SMS, which works at the ultimate limit of site-selective spectroscopy- spectrally and 

spatially selecting out an individual impurity in an ensemble. 

3.3 Hole-Burning Spectroscopy 

Spectral hole-burning is a powerful site selective spectroscopy of impurities in 

crystalline and amorphous solids.  It can reveal hidden spectral information, such as the 

homogeneous ZPL linewidth, electron-phonon coupling parameters, and exciton-level 

structure determination in proteins [35].  Moreover, it has been used as a powerful tool 

for probing the structural disorder and configurational tunneling dynamics of amorphous 

and glassy solids at low temperature [3, 35, 48, 69].  Spectral hole-burning was first 

reported by Personov et al. [36] for perylene and 9-aminoacridine in ethanol at 4.2 K.  

Similarly, Gorokhovskii et al. [33] reported similar observations for phthalocyanine in a 

Shpol’skii matrix.  For detailed information, excellent reviews of spectral hole-burning 

can be found in references [19-24. 38, 39]. 
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The basic physical principles of hole-burning (HB) are quite straightforward.  To 

burn a spectral hole, a narrow bandwidth laser (λB) is used to excite a small subset of 

impurity molecules, which can be excited via their ZPLs in an inhomogeneously 

broadened absorption band.  When these molecules are optically excited, they are then 

photophysically or photochemically transformed so that when they return to their ground 

electronic state, they no longer absorb at their original frequency.  This leaves the 

inhomogeneous absorption band with a “hole” that has a shape that reveals the ZPL and 

PSB structure of these selected molecules (see Fig. 4).  For sufficiently narrow laser 

linewidths, only the homogeneous lines that absorb at the exact same frequency will be 

“burned”, thereby revealing the hidden individual homogeneous lineshapes in the 

inhomogeneously broadened band [38]. 

The different photophysical and photochemical pathways that result in a spectral 

hole determines the particular hole burning method.  In photochemical hole-burning 

(PHB) spectroscopy [3, 27, 29-32], there is a photoreaction (such as tautomerization, 

bond breaking, and isomerization) of the impurity molecules in the excited electronic 

state so the chemical identity changes when the molecules return to the ground electronic 

state.  The molecules then no longer have the same optical properties and do not absorb at 

the original excitation frequency.  In nonphotochemical hole-burning (NPHB) 

spectroscopy [3, 35, 38], the host-guest matrix undergoes structural rearrangements when 

the impurity molecules are optically excited [40].  When the photochemically stable 

impurity molecules return to the ground electronic state the local nanoenvironment is 

different resulting in an energy shift of the impurity molecules, resulting in a spectral 

hole.  Most commonly, NPHB is  
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Figure 4.  Spectral hole-burning in an inhomogeneously broadened absorption band [47].  
Two curves represent the pre-burn (dashed-line) and the post-burn (solid line) absorption 
spectrum.  After hole burning at frequency ωB, the resulting hole-burning spectrum is 
shown about the zero line (the difference between the pre-burn and post-burn absorption 
spectrum).  Spectral holes form at ωB and ωC.  The hole at ωB consists of a zero-phonon 
hole (ZPH) component, which forms from burning out the ZPLs that are excited at ωB. 
There are also phonon side band hole (PSBH) and pseudo-PSBH components.  The 
PSBH forms from burning out the PSBs that are excited at ωB.  The pseudo-PSBH results 
from burning out the ZPLs that lie lower in energy to ωB, and burn via their PSBs.  
Another hole also forms at ωC by burning into the α-vibronic band of the main electronic 
absorption band.    
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observed in low temperature amorphous systems (glasses, polymers, and protein hosts) 

because of their inherent configurational host-guest interactions. 

Unlike crystals whose low temperature properties are determined by phonons, 

glasses and proteins are determined by a different low temperature excitation, two-level 

systems (TLS) [35, 41, 42].  TLS are atoms or groups of atoms that can occupy different 

energetic configurations.  It is the coupling of the impurity molecules to these TLS that 

accounts for the phenomenon of NPHB and is shown by a scheme of TLS transitions 

coupled to an impurity (extrinsic two-level system, TLSext) in Fig. 5 [40, 43, 44].  The 

superscripts α and β label the ground and excited electronic states of the probe.  It is 

considered that excitation of the zero-phonon transition of a chromophore at frequency 

ω B occurs in the left well, and is followed by a tunneling process in the excited state.  

The hole burning process of the chromophore competes with the relaxation to the ground 

state as depicted on the right well.  The left to right relaxation that takes place in the 

excited electronic state leads to a blue-shifted anti-hole. 

Based on optical dephasing studies [43, 45], it was suggested that for hole-

burning two types of TLS - extrinsic (TLSext) and intrinsic (TLSint) – are important.  

TLSext are associated with the impurity molecule and its inner shell of solvent molecules.  

In NPHB, the TLSext are responsible for the initiation of the hole formation.  TLSint of the 

host are connected with the excess free volume of glasses [46].  It is the coupling of the 

impurity molecules to the TLSint and low frequency phonon modes that are responsible 

for optical dephasing in glassy solids.  When the impurity molecule is optically excited, 

this triggers the rearrangement of the host environment, which then initiates the phonon-

assisted tunneling process that leads to hole formation.  Therefore, it is the  
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Figure 5.  Schematic of the NPHB mechanism [35, 43, 47].  The diagram shows the 
extrinsic two level system (TLSext) of a guest molecule in the ground state (α) and excited 
state (β).  After excitation (hωB) at the burn frequency (ωB) to β, the TLSex flips, due to 
the much lower barrier height (Vα) compared to the ground state, through phonon assisted 
tunneling (PAT), which is represented by the tunneling frequency, W.  The molecule then 
decays to the ground state and finds itself in a different host configuration, and therefore 
absorbs at a different frequency.  This results in the formation of a persistent spectral hole 
that can be observed experimentally.  Δα and Δβ are the double well asymmetry 
parameters in the ground and excited state, respectively.  q represents the intermolecular 
coordinate, ωB is the burn frequency.  
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phonon-assisted tunneling in  that is the rate-determining step in NPHB.  The 

 energy diagram in Fig. 5 depicts the situation where phonon-assisted tunneling in 

the excited state involves phonon emission and the anti-hole site absorbs at higher energy 

of ω B.  There are seven other energy level schemes [43].  Four of the eight lead to blue-

shifted anti-hole sites, whereas the other four lead to red-shifted sites.  Four of the 

schemes involve phonon absorption; the other four involve phonon emission.  Extensions 

beyond the TLS model have also been made [48]; Shu and Small have proposed multi-

level systems (MLS) in glasses and proteins, where several energetic configurations are 

present to further explain the NPHB phenomenon [43, 44].   

β
extTLS

β
extTLS

Both PHB and NPHB are referred to as persistent hole burning methods, since the 

holes can be observed on an experimental timescale longer than it takes to burn them.  

This is in contrast to transient spectral hole-burning, where the holes can only be 

observed an a timescale equal to or shorter than the experimental timescale it takes to 

burn them [49].  In transient spectral hole burning, (or triplet bottleneck hole-burning 

(TBHB)), the triplet state is used as a reservoir to store excited impurity molecules in 

resonance with the laser line.  While the impurity molecules are pumped into the triplet 

state, the absorption signal change can be measured with a spectrometer [49], or by using 

a reference laser beam to monitor the lifetime of the transient hole [50].   

In particular, PHB, NPHB, and TBHB are powerful methods for determining the 

low temperature excitation/energy transfer properties of photosynthetic pigment protein 

complexes, whose spectra are inhomogeneously broadened due to intrinsic structural 

disorder of the protein matrix [15, 35, 38].  These spectroscopies can reveal important 

information, such as: (a) the inhomogeneous broadening of Γinh of 
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)(10 yQSS → chlorophyll pigment protein electronic transitions via ZPH action spectra 

[35, 51-58], (b) electron-phonon coupling parameters (S and ω i) and intramolecular 

Franck-Condon factors via vibronic spectral hole structure [15, 59, 60], (c) the extent of 

correlation between site-distribution functions (SDF) of different molecular electronic 

transitions [30], and (d) the excitation energy transfer (EET) and electron transfer rates 

from the zero-point vibrational level in and between different photosynthetic complexes 

[30, 43].  Information obtained from (a), (b), and (c) are especially important for 

photosynthetic EET calculations since they determine the spectral density in the 

nonadiabatic Förster rate equation (see Chapter 2.2).  More recent developments in 

NPHB spectroscopy involve the coupling with external fields, e.g. electric (Stark), high 

pressure. [60-64]. 

In Stark HB spectroscopy, broadening or splitting of the ZPH is observed with 

applied electric field [65, 66].  This yields the value of fΔμ, where Δμ is the permanent 

dipole moment change and f is the local field correction factor.  In the absence of ZPH 

splitting, the change in Δμ  is determined from the change in Γ(0) in response to the 

applied field (ES).  In this case,  

                                                                                                  (3.10) 2/12
0 )1()( FF +Γ=Γ

where Γ0 is the ZPH linewidth at zero applied field and Γ is in units of circular frequency 

[65, 67], where F is given by: 

                                                              0/2 ΓΔ⋅= hSEμfF                                        (3.11) 

In glasses, the absence of Stark splitting may be expected when the matrix induced 

component of Δμ is larger than the inherent molecular Δμ component.  Large electric 
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field fΔμ shifts are important because they can separate the excitonic states of closely 

spaced Chl molecules that are strongly coupled and possess charge transfer character [61, 

68]. 

For high pressure hole burning experiments, the linear pressure shift rates of the 

ZPH (Rp) for strongly coupled Chl molecules are large (Rp > ~0.2 cm-1/MPa), compared 

to the ZPH shift rates for excitations localized on a single Chl pigment molecule (Rp ~ 

0.05 to -0.15 cm-1/MPa), and thus can be used to separate and characterize excitonic 

states.  The linear pressure shift rates of ZPHs can also be used to identify closely spaced 

excited states that cannot be easily resolved based on their hole burning characteristics 

[62, 63]. 

 Several formalisms for the theoretical modeling of HB spectra have been 

developed [35, 69, 70], with one such formalism developed by Hayes and Small [70].  

This has been successfully used to simulate low temperature spectral holes of impurity 

doped glasses such as APT in glassy water and photosynthetic complexes such as the 

bacterial RC, photosystem I and II of cyanobacteria, and the FMO antenna complex [19, 

62, 71, 72].  By using this master equation, the absorption at Ω after burning with a laser 

at ωΒ for time t at the low temperature limit is given by 

∫∑ ∏ ∑ −−Ω⎟
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where G(ω) is the inhomogeneous distribution function introduced previously, σ is the 

integrated absorption cross section of the impurity molecule (cm2), P is the photon flux in 

number of photons (cm-2 s-1), and Sk is the Huang-Rhys factor of the kth phonon.  φ is the 

hole-burning quantum yield that is given by [73] 
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where τfl is the fluorescence lifetime.  The lR,k are the single site lineshape functions 

(ZPL+PSB) with R=0,1,2… corresponding to the 0,1,2,… phonon transitions while lR=0 is 

the ZPL lineshape function which is Lorentzian.  L(ω -ωB) is the single site absorption 

spectrum for the ZPL centered at the burning laser frequency, ωB.  Then L(ω -ωB) can be 

expressed as follows: 
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The hole burned spectrum is then the difference between the post-burn and pre-burn 

[A0(Ω, t)] spectra, or )()( 0 Ω−Ω AAt .   

3.3 Single-Molecule Spectroscopy 

Single-molecule spectroscopy (SMS) is, as its name implies, the spectroscopy of 

one single impurity molecule or, in the case of photosynthesis research, one single 

photosynthetic complex (SCS) at a time.  This is usually achieved by using a narrow, 

tightly focused (through optical elements) laser that excites only one impurity molecule 

to a higher quantum electronic energy level (Eex) in an adequately dilute sample (see Fig. 

6 A-B).  By looking at molecules individually, the inhomogeneous broadening of 

impurity molecules in disordered solids can be eliminated since there are no ensemble 

averaging effects present.  With SMS, the statistical distribution of a parameter can be 

determined instead of its average value. This can uncover quantum effects and stochastic 

processes of molecules, which can be hidden because of ensemble averaging.  Optical 

SMS was first reported by Moerner et al. in 1989 [74] and has since grown to be a  
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Figure 6.  Energy level scheme (A) and illustration (B) of optical fluorescence single-
molecule spectroscopy detection [97].  In frame (A), the molecule is excited from the 
zero point ground to the zero point excited electronic (0-0) transition at low temperatures, 
hνLT, so there is no excitation from or into vibrational levels, which will cause optical 
dephasing.  It is also advantageous to have a low intersystem cross rate, kISC, and a high 
triplet decay rate, kT, so the molecule does not enter dark states where is does not 
fluoresce.  In frame (B), a single molecule is detected by focusing the excitation profile 
(solid arrows), so that only one molecule is resonance, and then detecting the emitted 
fluorescence (dashed lines). 
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powerful experimental technique for uncovering atomic and molecular quantitative 

information.  For detailed information regarding SMS theory and experimental  

techniques, excellent reviews of SMS and its applications can be found in references [75, 

76]. 

Through single molecule experiments, information can be obtained that is 

impossible to glean under ensemble averaged experiments.  For example, the 

homogeneous linewidths of individual molecules or complexes can be determined, such 

as the vibronic spectrum and the local dynamics of an impurity molecule [77-80], spectral 

diffusion resulting from the dynamical processes of the chromophore and protein matrix 

can be observed [81], and molecular transition dipole directions can be determined 

through polarization experiments [81-83].  SMS has also been used to detect molecular 

triplet state probabilities, the magnetic resonance of one spin [84, 85], and the correlation 

properties of emitted photons [86, 87].  Currently, fluorescence resonance energy transfer 

(FRET) between single biomolecules [88] and other single protein molecules [89-91] has 

been observed.  The excitonic structure for single light harvesting systems [92] has also 

been determined with SMS. 

Single molecules are detected optically when only one molecule is in resonance 

with the excitation laser beam at a time in the probe volume area and the signal to noise 

ratio  (SNR) > 1 during the experimental timescale (see Fig. 6A).  Ensuring that only one 

molecule is spectrally selected can be achieved by either using a sample with very low 

concentration ( ~ 10-7 - 10-10 M) or by a using sample with very large Γinh and tuning the 

laser excitation frequency into the wings of the inhomogeneous absorption band, where 

the number of resonance molecules is low.  Several fluorescence microscopy optical 
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techniques have been successfully used for single molecule detection such as near-field 

optical scanning microscopy [93], confocal microscopy [94], and far-field techniques 

such as epiflourescence and total internal reflection microscopy [95, 96].   

 After this, the most challenging task for achieving SMS is to optimize the signal-

to-noise ratio (SNR).  For single molecule detection (using fluorescence excitation) in a 

solid, the SNR can be approximated by the following equation [97, 98]: 
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where D is the overall efficiency for the detection of emitted photons (see [98, 99] for 

detailed description), φ F is the fluorescence quantum yield, σ P is the peak absorption 

cross-section, P0 is the laser power, A is the focal spot area, hν  is the photon pump 

energy, τ is the detector counting interval, Nd is the dark count rate, and Cb is the 

background count rate per Watt of excitation power.  In Eq. 3.15, the numerator 

represents the peak detected fluorescence counts from one molecule in time interval τ 

while the three terms in the denominator represent shot noise contributions from the 

emitted fluorescence, background, and dark signal, respectively. 

According to Eq. 3.15, to maximize the SNR, the experimental conditions should 

be optimized for the smallest possible focal volume containing the probe molecule, 

thereby minimizing the background signal.  In addition, the chosen probe molecule 

should (a) ideally have a large peak absorption cross-section, (b) high photostability and 

fluorescence quantum yield, (c) low triplet bottleneck probability, and (d) illumination 



www.manaraa.com

 104

below the saturation of the molecular absorption [75].  The issues and concerns with each 

of these conditions are thus explained further. 

 Having a large peak absorption cross-section, σ P, is extremely important for 

achieving SMS detection.  Since the absorption probability of a single molecule from an 

incident photon is σ P /A, maximizing σ P is important for both maximizing the photon 

absorption from the incident laser beam and minimizing the background signals from any 

unabsorbed photons.  At room temperature (RT), the peak absorption cross-section is 

given by 

                                                                                                      (3.16) A
P
RT /303.2 Nεσ =

in units cm2, where ε  is the molecular extinction coefficient (L mol-1 cm-1) and  NA is 

Avogadro’s constant.  The low temperature peak absorption cross-section,  is 

calculated using [100]: 

P
LTσ

                                                       ,                                   (3.17) )/(3 LOWRT
P
RT

P
LT ΓΓ= σσ

where ΓRT and ΓLOW are the width of the absorption spectrum at room temperature and of 

the ZPL at low temperature, respectively.   

An alternative method of estimating the peak absorption cross-section at low 

temperature is [98]:  
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cτσ                                        (3.18) 

where c is the speed of light, τ2 is the total dephasing time, Ο is the integrated absorption, 

and Ntot is the number density of absorbers producing Ο (units cm−2).  According to Eqs. 

3.17 and 3.18, σ P is inversely proportional to the ZPL linewidth (and directly 
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proportional to τ2).  Therefore, a narrow ZPL linewidth at low temperature gives a large 

peak absorption cross-section [3, 98]. 

 In addition, the impurity molecule should be photostable and show weak hole 

burning at the excitation laser frequency.  Since spectral hole burning causes the 

molecule to change its resonance frequency, it is necessary to provide sufficient time 

averaging of the single-molecule signal before it changes appreciably or moves to another 

spectral position.  The fluorescence quantum yield of the molecule should be high as 

well, i.e. approach unity.  The fluorescence quantum yield, φF, is given by [97]: 
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 ,                                      (3.19) 

where krad is the radiative rate (Einstein A coefficient), knonrad is the sum of all 

nonradiative rates (e.g. internal conversion, intersystem crossing), τ F is the excited state 

lifetime, and τ rad is the radiative lifetime [75].  The best fluorescing molecules are those 

with rigid structures that will decay via photon emission instead of non-radiatively 

through vibrational or rotational coupling.  Strongly emitting molecules can have 

lifetimes that are on the order of ns, with a maximum photon emission rate of ~ 108 s-1. 

 Optical saturation during excitation should also be avoided, as saturation leads to 

excess background signal and loss of absorption intensity since the molecule cannot 

efficiently decay back to the ground state. For organic molecules, saturation of the optical 

transitions becomes evident when the laser power Plaser ≥ 1 W cm-2. The dependence of 

the emission rate R(I) of an excited molecule on the saturation intensity, IS, is given by 

the following expression [97, 98]: 
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where I is the excitation laser intensity.  R∞ is the maximum emission rate of the excited 

molecule and is given by 
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 ,                                         (3.21)  

where k21 is the decay rate from S1 to S0, kISC is the rate of intersystem crossing, and kT is 

the total decay rate from the triplet state (T1) back to S0.   

The dependence of molecular absorption on IS is given by [97, 98]: 

                                                            ( )S
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σ  ,                                             (3.22) 

where is the low power peak absorption cross-section. The characteristic saturation 

intensity depends on the energy level structure of the molecule.  For optical transitions of 

a molecule that approximate a ground to excited state electronic transition, the saturation 

intensity is given by [75]: 

P
0σ

                                                              
F

PS
2 τσ

νhI =                                                    (3.23) 

where τ F is fluorescence lifetime.  However, intersystem crossing from singlet states into 

triplet states can represent a bottleneck and causes cessation of both absorption of 

photons and photon emission for a relatively long time equal to the triplet state lifetime.  

This effect results in premature saturation of the emission rate from the molecule and 

reduction of the absorption cross-section σ P.  Therefore, the premature saturation of the 

optical transition is dependent on whether the molecules have large triplet bottleneck 

probabilities.  The saturation intensity for a molecule with a triplet bottleneck can be 

estimated using the following expression [97, 98]:  
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In Eq. 3.24, the factor outside the brackets represents the saturation intensity if there was 

no triplet bottleneck, giving an upper limit for the saturation intensity.  According to this 

equation, in order to minimize the triplet bottleneck probability, ideal impurity molecules 

should be those which give small values of kISC and large values of kT.  Commonly, 

organic rigid, planar aromatic molecules, such as chlorin pigment molecules, satisfy these 

requirements [74, 75]. 

3.3 SMS Experimental System 

 While many optical techniques for SMS have been developed (see above), 

epiflourescence and confocal microscopy detection schemes remain ubiquitous for SMS 

due their excellent combination of spatial and spectral selectivity [74, 75, 97].  For the 

single molecule experiments presented in this dissertation, a unique low temperature 

confocal microscopy experimental system was developed for detection of single 

photosynthetic complexes. 

The optical system was based on a home-built confocal microscope with a 

Newport 60x 0.85 NA achromatic objective attached to the sample holder inside an 

immersion liquid helium cryostat (Janis).  In order to reduce sample movements due to 

temperature expansion, the rod of the sample holder was made from fused quartz.  The 

sample was moved in relation to the objective along the objective axis using an 

electromagnet with two parallel coils, one superconducting (for T < 7K) and the other 

made from copper wire.  A computer-controlled scanning mirror was used to move the 

focal spot across the sample plane.  Excitation was performed with a Coherent CR-699 

laser with Exciton LD-688 dye (650-720 nm), and with intra-cavity etalons removed, 
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providing a linewidth of several GHz.  After adjustment and to ensure that the 

photosynthetic complex containing sample was indeed in the focal plane of the objective, 

the scanning mirror was moved while the fluorescence (excited at 675-680 nm) was 

collected (at λ > 700 nm) by an avalanche photodiode (Perkin-Elmer, dark count < 25 s-).  

In order to focus on individual complexes, the mirror was then moved to positions 

determined from the raster-scan image and spectroscopic measurements were performed.  

Fluorescence excitation spectra were recorded with either a Princeton Instruments PI-

MAX intensified CCD camera or a liquid nitrogen-cooled, back–illuminated CCD 

camera.  A Jobin-Yvon Triax 320 spectrometer with a resolution of 0.4 nm was used to 

record fluorescence emission spectra.  For photosystem I (PS I) single complex 

experiments, an Omega AELP 700 long-pass filter and DRLP 710 dichroic mirror were 

used since PS I emits > 700 nm.  Also, in order to reduce background (mainly broadband 

dye fluorescence) an Omega 3rd Millennium SP700 short-pass filter was placed after the 

laser power stabilizer (BEOC).  The experimental setup is schematically depicted in Fig. 

7. 

Samples for single complex experiments were prepared by first diluting a 

concentrated photosynthetic complex solution (~ 10-3-10-4 M) with suitable buffer to 

achieve a Chl a concentration of approximately 10-7 M, where the concentration is 

determined by absorption.  Then the solution is diluted again in a buffer/glycerol mixture 

(3:1) by a factor of ~ 1000, and then spin-coated on a plasma-cleaned sapphire plate 

yielding a film thickness of less than 1 μm.  The use of glycerol here was not meant to 

facilitate formation of a transparent glass, but to adjust the viscosity of the solution for 

better thin film formation.  Polymers were not used for sample preparation because, 
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based on our experience (unpublished results), the photosynthetic complexes embedded 

in dry polymer films are disrupted compared to those studied in typical bulk experiments.  

Samples were then placed in a cold (< 0º C), dark, oxygen-free cryostat and the 

temperature was lowered to liquid helium temperature in about 20 minutes.  Experiments 

were performed at 10 K in helium gas or at 2 K in superfluid helium.  To avoid sample 

degradation, all room-temperature sample-handling procedures were performed in dim 

light as quickly as possible. 
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Figure 7.  Schematic of confocal microscope used for single complex spectroscopy.  EP 
is the excitation pinhole, DM is the dichroic mirror, MM is the motorized mirror, MO is 
the microscope objective, LP is the long-pass filter, and FM is the flipping mirror.  The 
APD aperture and the monochromator’s slit were used as detection pinholes.   
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CHAPTER 4 – EVIDENCE FOR HIGHLY DISPERSIVE PRIMARY CHARGE 

SEPARATION KINETICS AND GROSS HETEROGENEITY IN THE 

ISOLATED PS II REACTION CENTER OF GREEN PLANTS 

 

A submitted paper that was modified and published in the J. Phys Chem. B 2004, 108, p. 

10346-10356. 

Kerry Riley, Ryszard Jankowiak, Margus Rätsep, Gerald. J. Small  and Valter 

Zazubovich 

 

Abstract 

Despite the availability of an X-ray structure and many spectroscopic studies, important 

issues related to structural heterogeneity, excitonic structure, primary charge separation 

(CS) and excitation energy transfer dynamics of the isolated reaction center (RC) of 

photosystem II (PS II) remain unresolved.  The issues addressed here include (1) whether 

or not the primary CS kinetics at low temperatures are highly dispersive (due to structural 

heterogeneity), as proposed by Prokhorenko and Holzwarth (J. Phys. Chem. B 2000, 104, 

11563), and (2) the nature of the weak lowest-energy Qy absorption band at ~ 684 nm 

that appears as a shoulder on the intense primary electron donor band (P680).  Results of 

low temperature non-photochemical hole burning (NPHB) and triplet bottleneck hole 

burning (TBHB) spectroscopic experiments (including effects of pressure and external 

electric (Stark) fields) are presented for the RC from spinach with one of the two 

peripheral chlorophylls removed.  Both NPHB and TBHB are observed with excitations 

within the P680 and 684 nm bands.  Both types of hole spectra exhibit a weak 
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dependence on the burn wavelength (λB) between 680 and 686 nm.  Furthermore, the 

permanent dipole moment change (f Δμ), as determined by Stark-NPHB spectroscopy, is 

identical (0.9±0.1 D) for the two bands, as are the linear electron-phonon coupling 

parameters (Huang-Rhys factors S17 = 0.7 and S80 = 0.2 for 17 cm-1 and 80 cm-1 phonons).  

These similarities, together with published fluorescence line narrowed spectra lead us to 

favor the gross heterogeneity model in which the 684 nm band is the primary electron 

donor band (P684) of a subset of RCs that may be more intact than P680-type RCs.  

Based on the linear pressure shift rates for the P680 and P684 nm bands, it is concluded 

that population of either P680* (* ≡ Qy state) or P684* results in both TBHB (due to 

charge recombination of the primary radical ion pair) and NPHB.  It was found that the 

values of parameters (e.g. electron-phonon coupling, site distribution function) used to 

simulate the NPHB spectra also provided reasonable fits to the TBHB spectra.  

Acceptable theoretical simulations of the line-narrowed TBHB spectra were not possible 

using a single primary CS time.  However, satisfactory fits (including λB and burn 

intensity dependences) were achieved using a distribution of CS times.  The observed 

TBHB is due to P680- and P684-type RCs with the faster CS kinetics since the persistent 

non-photochemical holes were saturated prior to measuring the TBHB spectra.  (RCs 

exhibiting the most efficient NPHB have slower CS kinetics as well as higher 

fluorescence quantum yields.)  For the TBHB spectra the same distribution (Weibull) was 

used for the P680- and P684-type RCs.  The distribution describes quite well the 

distribution of Prokhorenko and Holzwarth for CS times shorter than 25 ps.  Finally, the 

data indicate that electron exchange contributes only weakly (relative to electrostatics) to 

the inter-pigment excitonic interactions. 
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Introduction 

Since its isolation in 1987, [1] the Qy(S1) excitonic structure, excitation energy 

transfer and charge separation dynamics of the photosystem II (PS II) reaction center 

(RC) have been the subjects of intense study (as reviewed in [2]).  The recently 

determined X-ray structure (3.8 Å resolution) of the PS II RC [3] has stimulated greater 

activity and confirmed that the structural arrangement of the core chlorins (Figure 1) is 

similar to that of the bacterial RC.  P1, P2, Chl1 and Chl2 are chlorophyll a molecules and 

Pheo1 and Pheo2 are pheophytin a molecules.  The subscripts denote the polypeptides to 

which the chlorins are bound, D1 and D2, which are analogous to the L and M 

polypeptides of the bacterial RC.  P1 and P2, for example, are the structural counterparts 

of PL and PM (bacteriochlorophyll molecules) of the bacterial RC, the special pair.  It is 

the lowest excited state of the special pair of the bacterial RC that serves as its primary 

electron donor state (see [4] for a review).  The X-ray structure also located the two 

peripheral Chl a molecules, ChlZ1 and ChlZ2 that are bound to D1 and D2 [3].  In what 

follows the RC with 6 Chl a molecules will be referred to as RC-6.  The RC with one of 

the two peripheral Chls removed [5] will be referred to as RC-5.  Because of their 

peripheral locations ChlZ1 and ChlZ2 are not expected to have a significant effect on the 

Qy excitonic structure of the core chlorins [6]. 

 Despite the availability of an X-ray structure and an earlier structural model [7], 

several important issues related to excitonic structure and dynamics have yet to be 

resolved [2].  To a considerable extent this is due to the severe spectral congestion of the 

S0→Qy absorption spectrum that spans a range of only ~ 500 cm-1, Figure 1.  It is  
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Figure 1.  Structure of the isolated PS-II RC (peripheral chlorophylls not shown).  Insert: 

Absorption (a; solid line) and fluorescence excitation (b; dashed line) spectra of PS II 

RC-5 sample at 5 K.  Both spectra are measured in the same experiment and with the 

same sample.  Vertical arrow indicates the shoulder at ~ 684 nm. 
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generally agreed, however, that the primary electron donor of the isolated PS II RC, 

P680, contributes significantly to the 680 nm absorption band.  The main issues to be 

addressed in this paper are the effects of structural heterogeneity on (1) the excitonic 

composition of the primary electron donor state (P680*) and on (2) the primary charge 

separation kinetics, as well as (3) the nature of the relatively weak absorption shoulder at 

~ 684 nm indicated by the arrow in Figure 1 for RC-5.  Such absorption also exists in 

RC-6, vide infra. 

 In early works it was assumed, by analogy with the bacterial RC, that P1 and P2 

form a special pair whose lowest excited dimer state is P680*, the primary electron donor 

state.  This assumption was called into question by Tetenkin et al. [8] and later by Durrant 

et al [6] who introduced the so-called multimer (excitonic) model for the six core 

chlorins.  The RC structure used was based on that of the bacterial RC but with the P1-P2 

distance (Mg…Mg) set at 10 Å, rather than the value of 7.6 Å for PL-PM.  The 

calculations took into account diagonal energy disorder; coupling energies were 

calculated using the point dipole-dipole approximation.  It was found that the Qy states 

are delocalized over ~ 3 chlorins, mainly on either the D1 or D2 branch.  Thus, a lowest 

energy, primary donor state highly localized on P1 and P2 did not emerge from the 

calculations.  Calculations of a similar vein, but based on the model structure of Svensson 

et al. [7] and/or the X-ray structure [3] were performed later [9].  The results for the two 

structures were similar, with the Qy states mainly delocalized over ~ 3-4 chlorins.  

However, it was not found that the states are mainly delocalized over either the D1 or D2 

branches, consistent with the results of [10].  Significantly improved fitting of hole-

burned and other spectra was achieved with Pheo2 decoupled from the other five 
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chlorins.  It was found that the two lowest Qy states are the most strongly absorbing with 

the absorption strength of the lowest equivalent to 2.3 Chl a molecules and that of the 

adjacent state equivalent to 1.1 Chl a molecules.  The calculated splitting between these 

two states is ~ 90 cm-1.  A key point for consideration of the 684 nm absorbing chlorin 

molecule is that all calculations to date do not predict a lowest energy state that is weakly 

absorbing.  Concerning the composition of the lowest energy state, P680*, it was found 

that, on average, P1 and P2 make the largest contributions although the contributions 

from Chl1, Pheo1 and, to a lesser extent, Chl2 are significant [9].  Compositional analysis 

of the lowest energy state of single complexes revealed that its excitonic composition 

varies significantly from complex to complex.  This provides support for the conclusion 

of Prokhorenko and Holzwarth [11] that the primary charge separation kinetics at low 

temperatures are highly dispersive.  It should be noted that a recent refinement of the X-

ray structure has led to a P1-P2 distance of 8.6 Å, [12] 1.4 Å shorter than the value 

reported in [3] and used in [9].  This distance may be short enough for the electron 

exchange coupling to be significant. 

Concerning the primary charge separation rate at or near room temperature for 

RC-6, values of (0.4 ps)-1 [13], (3 ps)-1 [14-17], (8 ps)-1 [18], and (21 ps)-1 [19] have 

been reported.  At liquid helium temperatures several groups have reported values in the 

(2−5 ps)-1 range [13, 20-25].  (The results in [25] led to the conclusion that the primary 

charge separation rate of RC-6 and RC-5 in the low temperature limit are very similar.)  

However, Prokhorenko and Holzwarth recently reported photon echo data obtained at 1.3 

K which, on the basis of theoretical simulations, indicate that there is not a well-defined 

primary charge separation rate, i.e. the kinetics of primary charge separation are highly 
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dispersive, with charge separation times ranging from a couple of ps to several ns.  The 

dispersive kinetics would be a consequence of the structural heterogeneity leading to a 

lower energy Qy state whose chlorin composition varies significantly from RC to RC.  Of 

relevance to this paper is that the simulations of the triplet bottleneck hole burned 

(TBHB) spectra of P680 presented in [25] assumed that the primary charge separation 

kinetics are non-dispersive. 

 Concerning the weak 684 nm absorption band, it was suggested early on that it 

corresponds to the lowest energy band of the special pair (P1, P2) with the higher energy 

and more strongly absorbing dimer level located at 680 nm [26].  The same group later 

argued against that interpretation [27].  It was reported in [21] that the 684 nm absorbing 

chlorin(s) is fragile, e.g. easily disrupted by the detergent TX-100 at concentrations of 

TX-100 too low to significantly affect the P680 band.  It was also observed that the 

intensity of the 684 nm absorbing chlorin varied in different samples.  These observations 

led to the suggestion that the 684 nm absorbing Chl(s) is a solvent exposed 'linker' 

pigment that may serve to shuttle excitation energy from the proximal antenna complexes 

to the RC at biological temperatures.  The 'linker' was later assigned to one of the two 

peripheral Chl molecules [28].   

New insights on the 684 nm absorbing pigment(s) emerged from the experiments 

of Völker and coworkers [29, 30].  Based on zero-phonon hole (ZPH) action spectra they 

determined that the width of the site (state) excitation frequency distribution function 

(SDF) of the 684 nm absorbing Chl is ~ 140 cm-1 and ~ 150 cm-1 for RC-6 and RC-5, 

respectively, with the Gaussian SDF centered near 684 nm.  These widths represent static 

inhomogeneous broadening.  Very narrow (  1 GHz) ZPH widths were observed (T ≤ ~<
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4.2 K) and convincingly attributed to pure dephasing from electron-two level system 

coupling.  Thus, the excitation energy transfer and/or primary charge separation times 

must be very long (ns time scale) for the 684 nm Chl probed by persistent hole burning.  

For that reason the 684 nm state was referred to as a trap state [30].  It has been suggested 

that this state may be due to a subset of the RCs for which primary charge separation is 

highly forbidden on energetic grounds [2].  Since such a model does not predict a distinct 

684 nm absorption band, the same group proposed that the 684 nm band is the origin 

band of the primary donor state with the 680 nm band corresponding to a phononic 

transition involving a ~ 80 cm-1 mode [31].  Another interpretation put forth is that the 

684 nm absorption band is due to the primary donor P684 of intact RC and that the 

procedure used to obtain the isolated RC results in structural changes that blue-shift the 

primary donor band of the majority of the RC to 680 nm.  Very recently, Smith et al. [32] 

reported magnetic circular dichroism spectra (1.7 K) for the O2-evolving PS II complex 

from spinach and assigned a narrow (~ 45 cm-1) spectral feature at 683.5 nm to the 

primary electron donor (P684). 

 We present the results of persistent nonphotochemical hole burning (NPHB) and 

TBHB experiments designed to provide new insights on primary charge separation and 

the 684 nm absorbing Chl a.  High pressure and external electric (Stark) fields are 

combined with hole burning to enhance spectroscopic selectivity.  The experimental data 

and theoretical simulations are consistent with a model in which gross heterogeneity 

leads to two types of RC, one in which the primary electron donor absorbs at ~ 680 nm 

(P680) and the other at ~ 684 nm (P684).  Intrinsic structural heterogeneity in each type 

of RC leads to highly dispersive primary charge separation kinetics.  The model suggests 
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that the lowest energy Qy state of RCs (of both types) with the slowest charge separation 

is the trap state referred to above.  Potential problems with the model are considered as 

well as alternative explanations of the data. 

Experimental 

 PS II RC-5 complexes containing ~ 5.3 Chl a molecules per two Pheo a 

molecules were prepared and purified from market spinach as described in [18].  Samples 

were dissolved in a mixture of MES buffer (pH = 6.5) containing 2 mM 

dodecylmaltoside and 5 mM imidizole.  Glycerol was added (v/v ratio of 1:2) to ensure 

formation of high optical quality glasses upon cooling to liquid helium temperatures.

 Moderate resolution (0.5 cm-1) absorption and hole burned spectra were measured 

with a Bruker HR120 FT spectrometer.  The burn laser was a Coherent 699 ring dye laser 

with the intra-cavity assembly (ICA) removed (2 GHz linewidth).  This setup was used in 

some Stark (external electric field) experiments and all high pressure experiments.  

Persistent zero-phonon hole (ZPH) action spectra [33] were obtained with the 

ICA installed (long term laser linewidth < 20 MHz).  Action spectra were obtained in 

both the transmission and fluorescence detection modes.  For the former, light transmitted 

through the sample was detected with a diode assembly based on a UDT-10 DPI 

photodiode, optimized for high sensitivity and slow response.  For the latter mode, 

fluorescence was detected by a Hamamatsu 2949 PMT at 90° relative to the excitation 

beam direction.  A 730 nm cut-off filter was used to suppress scattered laser light.  

Spectra were corrected for the transmission characteristics of the neutral density filters 

(LOMO, Russia).  Spectra obtained in the excitation mode with different filter sets were 

essentially identical after correction.  ZPH were well-fitted with Lorentzian profiles.  
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Fractional hole depths were calculated as the ratio of ΔOD at the peak of ZPH divided by 

OD prior to burning (transmission mode).  For the fluorescence detection mode, the 

fractional hole depth was calculated as the fluorescence intensity decrease after burning 

divided by the intensity prior to burning.   

 Triplet bottleneck hole burned (TBHB) spectra were obtained following 

saturation of the persistent nonphotochemical hole (NPHB) spectrum, as described in 

[25].  This procedure ensures that TBHB spectra correspond to RCs undergoing efficient 

primary charge separation.  The Stark hole burning apparatus is described in [34].  The 

setup allows for determination of the response of the ZPH with laser polarization parallel 

and perpendicular to the applied field.  For 665 nm ≤ λB ≤ 679 nm, a spectral resolution 

of 0.5 cm-1 was used, vide supra.  Burn fluences ranged from ~ 10 J/cm2 to ~ 75 J/cm2.  

For λB ≥ 680 nm, holes were burned and read with a resolution of 20 MHz (fluorescence 

excitation mode).  In this mode a burn fluence of 1.5 mJ/cm2 was used.  The high 

pressure apparatus used is described in [35].  When the desired pressure exceeded the 

pressure of helium solidification at the temperature of the hole burning experiment (~ 6 

K), the cell was pressurized at ~ 60 K and then cooled to 6 K. 

Results 

 Absorption, excitation and ZPH action spectra.  Absorbance (A) and 

fluorescence excitation (B) spectra for the Qy-region of RC-5 are shown in the insert of 

Figure 1.  The absorption spectrum, with a maximum at ~ 679 nm and shoulder at ~ 684 

nm, is very similar to those presented in [29, 30, 36, 37].  The fluorescence excitation 

spectrum differs significantly from the spectra reported by den Hartog et al. [30].  The 

maximum at ~ 679 nm in Figure 1 is broader and much less pronounced.  This difference 
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cannot be attributed to sample degradation since the absorption spectrum was recorded 

immediately after recording the excitation spectrum.  We note that fluorescence 

excitation spectra obtained without correction for the transmission characteristics of the 

neutral density filters were quite similar to those of den Hartog et al.  The difference 

between the two spectra in Figure 1 establishes that the fluorescence quantum yield is not 

constant as the excitation is tuned across the absorption spectrum.  The decrease in 

fluorescence quantum yield for excitation wavelengths in the vicinity of 680 nm might be 

expected given that primary charge separation involving P680 occurs on a time scale as 

short as a few picoseconds.   

 Figure 2 shows persistent ZPH action spectra obtained in the transmission mode 

(frame A) and fluorescence excitation mode (frame B) with a burn fluence of 3 mJ/cm2.  

(The excitation action spectrum obtained with 0.3 mJ/cm2 was very similar to that in 

frame B).  The action spectra correlate with the spectra in Figure 1, e.g. the maximum of 

the spectrum in frame A and of spectrum a (absorbance) in Figure 1 are at ~ 680 nm, and 

both spectra feature a relatively weak shoulder at ~ 684 nm.  The action spectrum in 

frame A could be well-fitted for λ ≥ 676 nm with two Gaussian profiles at 679.9 nm and 

683.9 nm with widths of 110 and 90 cm-1, respectively, and the amplitude of the former 

(dashed curve) a factor of 2.4 higher than that of the latter (dotted curve).  We note that 

the action spectrum obtained in the transmission mode is very similar to that reported in 

[37], which was obtained with a burn fluence of 15 J/cm2 and measured with a resolution 

of 0.5 cm-1.  Fitting of the ZPH action spectrum obtained in the fluorescence excitation 

mode with a single Gaussian led to a SDF centered at 683.5 nm with an inhomogeneous  
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Figure 2.  Action spectra obtained in transmission (A; triangles) and fluorescence 

excitation (B; diamonds) modes with 3 mJ/cm2 irradiation.  Frame A: The best 

parameters for two-Gaussian fit are (peak position / width): 679.9 nm / 110 cm-1 (dashed 

line) and 683.9 nm / 90 cm-1 (dotted line) with the amplitude ratio 2.4:1.  Frame B: The 

best fit parameters are 680.0 nm / 120 cm-1 (dashed line) and 683.9 nm / 110 cm-1 (dotted 

line) with the amplitude ratio of 1:2.4.  Solid curves are sums of dashed and dotted 

curves. 
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width of 130 cm-1, values close to those reported by den Hartog et al. [30].  A better fit 

was obtained by using two Gaussians at 679.9 (dashed curve) and 683.9 nm (dotted 

curve) with the amplitude of the latter a factor of 2.4 higher than that of the former, frame 

B of Figure 2.  This situation is roughly the reverse of that for the action spectrum in 

frame A of Figure 2. 

 The results of Figure 2 establish that states absorbing at ~ 680 and ~ 684 nm 

undergo persistent nonphotochemical hole burning (NPHB).  Prior to the introduction of 

the multimer model, it was proposed that [37, 38] the state at 680 nm responsible for 

NPHB is localized on Pheo1 since the non-line narrowed hole profile obtained with non-

resonant excitation is very similar to the bleach profile resulting from white light plus 

dithionite reduction of Pheo1 (primary electron receptor) at 4 K.  An additional 

consideration was that NPHB was not observed for the primary donor absorption band 

(P870) of the purple bacterium Rb. sphaeroides, a consequence of the primary charge 

separation rate (~ 1 ps)-1, being several orders of magnitude higher than the NPHB rate.  

The possibility that P680→P680* excitation can result in both NPHB and TBHB is 

considered in section 4. 

 Pressure dependent results.  In earlier studies it was shown that the TBHB 

spectra of the isolated PS II RC-6 obtained at liquid helium temperatures under non-line 

narrowing conditions consists of two components centered near 680 and 684 nm [21].  

Formation of the triplet state is a result of charge recombination of the radical ion pair 

associated with primary charge separation.  To gain further insight on the two 

components, non-line narrowed TBHB spectra (6 K) were obtained at pressures of 0.1, 

12, 154, 298 and 402 MPa (λB = 665 nm).  The 0.1 and 402 MPa spectra are shown in 
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Figure 3, along with fits obtained using two Gaussians.  At ambient pressure they are 

centered at 680.0 nm (14705 cm-1) and 684.3 nm (14614 cm-1), with widths of 115 and 

85 cm-1, respectively.  Note that these values are very similar to those obtained from the 

action spectrum in frame A of Figure 2.  At 402 MPa the Gaussians are peaked at 14655 

and 14554 cm-1, with widths of 125 and 90 cm-1.  The linear pressure shift rates for the 

680 and 684 nm components (states) obtained using the spectra for all five pressures are 

−0.12 ± 0.01 cm-1/MPa and −0.15 ± 0.01 cm-1/MPa, respectively.  The shift rates of 

persistent ZPH burned into the 680 and 684 nm bands are, within experimental 

uncertainty, the same as those given above.  The results for λB (burn wavelength) = 680 

nm and 686 nm are shown in Figure 4.  The respective shift rates are 0.11 ± 0.005 and 

0.16 ± 0.01 cm-1/MPa.  We emphasize that λB = 686 nm is highly selective for the 684 

nm absorbing pigment(s). 

 Stark hole-burning spectroscopy.  Stark hole-burning spectroscopy has proven 

to be a powerful approach for determining the permanent dipole change (Δμ) associated 

with the S0 → Qy(S1) transitions of photosynthetic complexes [39-41].  Typically, one 

monitors the dependence of the ZPH profile (coincident with λB) with the laser 

polarization parallel and perpendicular to the applied electric (Stark) field.  In the absence 

of splitting of the ZPH in either polarization, Δμ is obtained from the dependence of the 

ZPH width (Γ) on the applied field (ES) [42, 43]. 

                                                                                                        (1) 2/12
0 )F1()F( +Γ=Γ

where Γ0 is the width (fwhm) of the ZPH at zero applied field and  

                                                              0s /Ef2F ΓμΔ⋅= h                                              (2) 
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Figure 3.  Frame A: Triplet bottleneck hole spectrum resulting from excitation at 665 nm 

with ~ 200 mW/cm2, p=0.1 MPa.  The hole is best fitted by a sum of two Gaussians 

(dashed curves), peaked at 14705 cm-1 (680.0 nm) and 14614 cm-1 (684.3 nm).  The widths 

of these Gaussians are 115 and 85 cm-1, respectively.  Frame B: Triplet bottleneck hole at 

402 MPa; the best fit parameters are 14655 / 125 and 14554 / 90 cm-1. 
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Figure 4.  Pressure-induced shifts of the ZPHs burned at 680 nm (triangles) and 686 nm 

(squares).  The shift rates are –0.11 and –0.16 cm-1/MPa, respectively. 
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with f the local field correction factor.  The unit of Γ is circular frequency.  The absence 

of Stark splitting of the ZPH in both polarizations is expected when the matrix-induced 

contribution to Δμ dominates the intrinsic contribution of the chromophore and is random 

in a vectorial sense [42].  Stark hole burning data (2.0 K) were obtained for λB-values 

between 665.0 and 686.5 nm.  The f⋅Δμ values, in the unit of Debye (D), are listed in 

Table 1 for ES parallel (⎪⎪) and perpendicular (⊥) to the laser polarization E .  Values in 

italic and Roman were obtained in the fluorescence excitation mode (20 MHz resolution) 

and transmission mode (0.5 cm-1 resolution with FT spectrometer), respectively.  

Representative Stark ZPH broadening data for λB = 680 nm, λB = 686 nm and E l  

parallel to ES are shown in Figure 5.  Again, λB = 686 nm is highly selective for the 684 

nm absorbing chlorin.  The solid and dashed curves are the fits to the data obtained with 

Eq. (1). 

l

 The f⋅Δμ values in Table 1 are interesting in a couple of respects.  First, they are 

essentially constant (~ 0.9 D) for λB ~>  679 nm, which means that the 680 and 684 nm 

absorbing states cannot be distinguished on the basis of permanent dipole moment 

change.  Second, f⋅Δμ values are smaller for λB < 679 nm and, furthermore, f⋅Δμ values 

in the range ~ 0.4−0.6 D are typical for a Chl a monomer in polymers and in proteins.  

The small differences (~ 10%) between f⋅Δμ values for ES ⊥ E l  and ES ⎪⎪ E  for some 

of the burn wavelengths may be due to anisotropy of the molecular polarizability and/or 

the interplay between the molecular, random matrix and non-random matrix dipole 

moment changes. 

l
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Figure 5.  Dependence of the ZPH width on the external electric field for λB = 680 nm 

(triangles) and 686 nm (squares).  Dashed and solid curves, respectively, are the fits to 

the data with Eqs. 1 and 2.  Laser light polarization was parallel to the external field.  

fΔμ = 0.9 D for both wavelengths.  
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Table 1. Dipole moment change f Δμ at different wavelengths a. 

 

Wavelength (nm) f Δμ (D), ES || El f Δμ (D), Es ⊥ El 

665 0.4±0.1 0.4±0.1 

668 0.6±0.1 0.6±0.1 

671 0.7±0.1 0.6±0.1 

673 −b 0.7±0.1 

675 −b 0.8±0.1 

679 1.0±0.1 0.9±0.1 

680 0.91±0.05 −b 

681 0.9±0.1 0.85±0.1 

682 0.91±0.05 0.81±0.05 

683 1.0±0.1 0.8±0.1 

684 0.93±0.05 0.75±0.05 

685 0.9±0.1 −b 

686 0.93±0.05 0.8±0.1 

686.5 0.9±0.1 0.8±0.1 

a Numbers in Roman and italic obtained in the transmission and fluorescence excitation 

modes, respectively.   

b Not measured. 
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Dependence of hole burned spectra on burn intensity and burn wavelength.  

Persistent NPHB spectra (A-D) and transient TBHB spectra (E-H) obtained with λB = 

680, 682, 684 and 686 nm at 5 K are shown in Figure 6.  The burn fluences used to obtain 

the three spectra in each of frames A-D and the burn intensities (IB) used to obtain the 

four spectra in each of frames E-H are given in the caption.  The sharpest feature in each 

spectrum is the ZPH coincident with λB.  The solid and dashed upward arrows locate the 

pseudo- and real-phonon sideband holes (PSBH) displaced by 17 cm-1 from the ZPH.  

The spectra in frames A and E are similar to those reported in [25] for RC-6 and λB ~ 680 

nm.  Of particular importance is that the dependence of the NPHB spectra on λB is weak 

and that the electron-phonon coupling of the TBHB spectra would appear to be 

significantly stronger than that of the NPHB spectra, as judged by the intensity of the 

ZPH relative to that of the phonon sideband hole structure.  The apparent difference in 

electron-phonon coupling strength has been investigated [35].  For λB ~ 680 nm, the 

theoretical simulations led to S17 ~ 0.7 and S17 ~ 1.6 for the NPHB and TBHB spectra, 

respectively, where S17 is the Huang-Rhys factor for the 17 cm-1 phonons.  In fitting the 

TBHB spectra it was assumed that the primary charge separation rate is not distributed.  

That the two values of S17 differ significantly was taken as evidence that the chlorin 

pools (states) responsible for the two types of hole spectra are different.  It is shown in 

section 4 that this need not be the case when the primary charge separation rate is 

dispersive (distributed). 

 Hole spectra in Figure 6 were simulated using the theory of Hayes et al. [44] that 

has been successfully applied to several photosynthetic complexes, including the  
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Figure 6.  Frames A-D: Persistent NPHB spectra for λB = 680, 682, 684 and 686 nm, 

respectively.  Burn fluences are 2.4 J/cm2 for dotted curve, 170 J/cm2 for dashed curve 

and 1600-1800 J/cm2 for solid curve.  Frames E-H: Triplet bottleneck hole spectra for   

λB = 680 − 686 nm, respectively.  Burn intensities are 2, 40, 200 and 600 (at 684-686 nm) 

or 700 (at 680-682 nm) mW/cm2.  Vertical solid arrows indicate pseudo-PSBH peaked at 

17 cm-1 from the ZPH.  Vertical dashed arrows indicate the real-PSBH.  Dashed 

horizontal lines represent the depths of the ZPH, which are obscured by deeper holes.  In 

frames E, F the additional solid arrows indicate the broad satellite hole at 684 nm. 
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bacterial RC [45], the FMO antenna complex [46], and photosystem I of cyanobacteria 

[39, 40].  The absorption at Ω following burning at ωB with photon flux P for time τ is 

given by (low temperature limit) 
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where G(ω) is the site (or state) energy distribution function (SDF) of the ZPL, σ the 

integrated absorption cross-section, φ the hole burning quantum yield and Sk and ωk the 

Huang-Rhys factor and frequency of the k-th phonon.  The  are line shape functions 

with R = 0, 1, 2,… corresponding to the 0-, 1-, 2-,… phonon transitions.   is the 

ZPL shape function (a Lorentzian).  L(ωB−ω) is the single site absorption spectrum for 

the ZPL centered at the burn frequency ωB: 
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The hole spectrum is the difference between post-burn and pre-burn (A0(Ω)) spectra: 

 )(A)(A 0 Ω−Ωτ   . (5) 

We emphasize that Eqs. 3 and 5 account for the fluence broadening of the ZPH.  

We consider first simulations of the persistent NPHB spectra.  Quality of the fits 

should be based on the ZPH and the pseudo-PSBH since the real-PSBH is interfered with 
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by the anti-hole, [47] which is not accounted for in Eq. 3.  In addition to the 17 cm-1 

phonons, the 80 cm-1 phonons active in the fluorescence line-narrowed (FLN) spectra of 

the isolated PS II RC [30] were included in the simulations.  The first approximations to 

the one-phonon profiles of the 17 cm-1 and 80 cm-1 phonons could be obtained directly 

from the FLN spectra.  The Huang-Rhys factors S17 and S80 were adjustable parameters.  

It was not possible to simultaneously fit the persistent NPHB spectra for the four λB-

values with a SDF that is a single Gaussian, but it was possible using a sum of two 

Gaussians, as suggested by the ZPH action spectrum in frame A of Figure 2.  All best fit 

parameter values are listed in Table 2.  In frame A of Figure 7 the experimental hole 

burned spectrum (λB = 680.0 nm, burn fluence ~ 1700 J/cm2) is compared with three 

calculated spectra.  The best fit (red curve) was obtained with the parameter values in 

Table 2 (see Figure 7 caption for parameters of other simulated spectra).  The 

experimental hole spectrum for λB = 686 nm (burn fluence ~ 1700 J/cm2) is shown in 

frame B of Figure 7.  The fit (dashed curve) was obtained with the parameter values in 

Table 2.  As in frame A, the fit to the right of the ZPH is poor because of the neglect of 

the anti-hole. 

Turning next to the TBHB spectra (E−H) of Figure 6, it was also found that 

significantly improved fits were obtained when a SDF that is the sum of two Gaussians 

was used, consistent with the non-line narrowed TBHB spectra in Figure 3.  However, it 

was not possible to obtain satisfactory fits to spectra for λB = 680, 682, 684 and 686 nm 

and the four burn intensities.  This is illustrated in frame D of Figure 8 for λB = 686 nm 

and burn intensities of 40, 200 and 600 mW/cm2.  Calculated spectra are shown for S17 =  
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Figure 7.  Saturated persistent holes burned at 680 nm (A) and 686 nm (B), black solid 

curves, and their fits according to the model by Hayes et al. [45] (see Table 2 for 

parameters).  In frame A dotted (a) and dashed (b) curves are for S17 = S80 = 0.7, the 

parameters deduced from FLN spectra [31].  Ratio of peak intensities of 680 and 684 nm 

SDFs was 2.5:1 (a) and 5:1 (b).  Red curve corresponds to S17 = 0.7, S80 = 0.2 and the 

SDF peak ratio of 2.5:1.  In frame B only the spectrum calculated with latter parameters 

is shown (red) along with the experimental spectrum (black).  
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Table 2. Parameters used to fit persistent and triplet bottleneck hole spectra. 

 

Parameter 686 nm holes 680 nm holes 

P684 SDFa peak / width 684.7±0.5 nm / 90±10 cm-1 

P680 SDF peak / width 680.3±0.5 nm / 110±10 cm-1 

Peak intensity ratio (P680 : P684) ≡ R 2.5 : 1 

Phonon frequency ω1: 17±1 cm-1 

One-phonon profile (ω1)b. 11±1 cm-1 / 16±2 cm-1, 

Huang-Rhys factor S17 0.7±0.1 

Phonon frequency (ω2) 80±5 cm-1 

One-phonon profile (ω2) 90±10 cm-1 

Huang-Rhys factor S80 0.2±0.1 

Homogeneous ZPL width for persistent holes 0.5 cm-1 1.0 cm-1 

Homogeneous ZPL width for triplet bottleneck 

holes 

Subject to Weibull distribution with 
α=1.2 and maximum at 0.6 cm-1. 

 

a SDF ≡ site (state) excitation frequency distribution function.  b Gaussian shape on low-

energy side (fwhm=11±1 cm-1) and Lorentzian shape on high-energy side (fwhm=16±2 

cm-1).  c Gaussian with fwhm of 90±10 cm-1.  d Resolution-limited 
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Figure 8.  Frames A-C: Experimental (black) and calculated (red) triplet bottleneck hole 

spectra obtained with the same electron-phonon coupling parameters as used to fit 

persistent holes (S17 = 0.7, S80 = 0.2) and a distribution of homogeneous ZPL widths 

depicted in Figure 9.  (Burn wavelengths are 680, 684 and 686 nm in frames A-C, 

respectively).  Frame D: The hole spectra for λB = 686 nm and their fits with no ZPL 

width distribution, fixed ZPL width of 2 cm-1 and strong electron-phonon coupling.  Blue 

curve: S17 = 1.25, red curve: S17 = 1.5.   
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1.25 (blue curve) and 1.50 (red curves); all other parameter values are as given in Table 2 

except that the ZPL width was set equal to 2 cm-1 and the shape of the one-phonon 

profile of the 17 cm-1 mode changed slightly to improve the fits.  The 2 cm-1 width 

corresponds to the primary charge separation time of ~ 5 ps reported in [25], T= 5.0 K.  It 

proved impossible to simulate the peak intensity and width of the ZPH and the intensity 

and shape of the phonon sideband hole structure using a fixed ZPL width.  In the 

following section it is shown that a distribution of ZPL widths (charge separation rates) 

results in significantly better fits to the TBHB spectra. 

Discussion 

 We begin by considering possible assignments for the 684 nm absorbing 

chlorin(s).  Following that the question of whether or not the primary charge separation 

kinetics are highly dispersive is addressed or, equivalently, the question of whether or not 

the primary electron donor state (lowest energy Qy state) is well defined.  The section 

ends with some remarks on the strength of the excitonic couplings between the core 

chlorins. 

A.  Nature of the 684 nm absorbing chlorin.  The absorption spectrum in Figure 

1 and hole burned spectra in Figures 2, 3 and 6 provide convincing evidence for the 

existence of the 684 nm absorbing chlorin(s).  In view of the multimer model one might 

propose that the weak 684 nm band is due to the lowest energy exciton level of the core 

chlorins.  However, the excitonic calculations are inconsistent with this since they predict 

that the lowest energy Qy-state should be the most strongly absorbing, not weakly 

absorbing [6, 9, 10].  Also inconsistent with this are the TBHB spectra shown in frames 
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G and H of Figure 6 obtained with λB = 684 and 686 nm, wavelengths quite highly 

selective for the 684 nm band.  The spectra are devoid of any intense satellite hole 

structure that lies to higher energy of the hole peaked at λB (the spectral region higher in 

energy than 14800 cm-1 (676 nm), which is not shown in frames G and H, also showed 

no hole structure).  Such satellite hole structure would be a natural consequence of the 

weak 684 nm band corresponding to the lowest energy Qy-state.  A nice example of such 

satellite hole structure is the special pair of the RC of Rps. viridis [48].   It was shown that 

a hole burned in the lower dimer band (P−) of the special pair produced a satellite hole in 

the higher energy upper dimer band (P+).   

 A second interpretation of the 684 nm band was that it is the origin of the primary 

electron donor's absorption with the P680 band corresponding to the one-quantum 

transition of a ~ 80 cm-1 vibration (phonon) [2].  This interpretation is untenable since the 

absorption spectrum (Figure 1) and TBHB spectra (Figure 3) lead to a Huang-Rhys factor 

(S80) of ~ 2.  The Franck-Condon progression for S80 ~ 2 would exhibit a maximum for 

the two-quantum transition at 2 × 80 cm-1 = 160 cm-1, which is clearly absent in the 

TBHB spectra of Figure 3.  We note also that a lengthy Franck-Condon progression in an 

80 cm-1 mode is absent in the TBHB spectrum shown in frame H of Figure 6.  Also, the 

observation that the 684 nm band is fragile while the P680 band is much less so is also 

inconsistent with the above interpretation. 

 In the absence of gross structural heterogeneity, a more likely assignment for the 

684 nm band is that it corresponds to a localized Qy transition of a particular RC chlorin 

that lies lower in energy than the primary electron donor's absorption (P680).  Such a 

state would serve as a trap state.  Because of the aforementioned fragility, it was 
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proposed that the responsible chlorin is one of the two peripheral Chls [38].  (It is known 

with certainty that one of the peripheral Chls absorbs near 670 nm [2].)  There are, 

however, potential problems with this assignment.  First, the results of the fs pump-probe 

experiments on RC-5 and RC-6 at room temperature indicate that both peripheral Chls 

absorb near 670 nm [5].  Second, the Qy absorption spectrum for RC-5 calculated with 

either the multimer or pentamer excitonic Hamiltonians for the core chlorins, when 

added to the absorption of the peripheral Chl, does not fit well the observed spectrum 

unless the latter absorption is located near 670 nm, not 684 nm [6, 9, 10].  A third 

(possible) problem is related to motional narrowing of the inhomogeneous broadening of 

the site (chlorin) Qy transition due to excitonic delocalization.  It was determined in [37] 

that the site inhomogeneous broadening is, on average, ~ 200 cm-1.  Motional narrowing 

resulted in reduction of this width to ~ 120 cm-1 for the observed 'delocalized' transitions 

[37, 9].  The observed inhomogeneous width for the 684 nm band is only ~ 90 cm-1 

(Table 1), slightly narrower than the inhomogeneous width of the P680 band which one 

expects to be motionally narrowed.  The 90 cm-1 width would seem to be too narrow to 

be attributed to a transition localized on a single chlorin.  This line of reasoning can be 

used to argue against the 684 nm band being due to a transition localized on any of the 

core chlorins.  Nevertheless, the possibility that the 684 nm band is due to such a 

localized state cannot be excluded at this time. 

 Model for the 684 nm absorbing chlorin(s) based on gross structural 

heterogeneity.  In this model the P680 and 684 nm bands are considered to arise from 

the same 'subset' of pigments.  At low temperatures the oxygen-evolving PS II (D1/D2-

cyt b559 RC plus CP43 and CP47 proximal antenna complexes) of spinach and 

 



www.manaraa.com

 149

cyanobacteria exhibits a primary electron donor absorption band near 684 nm (P684) [32, 

49] rather than 680 nm.  The possibility that the biochemical procedure used to isolate 

and solubilize the RC shifts the P684 nm band of the majority of the intact RCs to 680 

nm, while leaving a smaller fraction of RCs that still absorb at 684 nm, is worthy of 

consideration.  Removal of the CP43 and CP47 antenna complexes might destabilize the 

RC, leading to a blue shift of the P684 band.  An additional consideration is that the two 

plastoquinones of the RC are removed during the isolation procedure [2].  This 'P680-

P684 model' for the isolated RC would appear to be consistent with the observation that 

the 684 nm absorbing chlorin(s) of the isolated RC are especially fragile.  However, our 

intent is to be more general and explore the possibility that the isolated RC consists of 

two subpopulations with primary electron donor absorption bands at 680 nm (P680) and 

684 nm (P684), regardless of the origin of heterogeneity. 

 This possibility is supported by the experimental results presented here.  First, 

those in frames E-H of Figure 6 show that TBHB spectra of comparable intensity result 

from excitation at 680 nm and 686 nm, with the latter wavelength selective for the 684 

nm state (P684*).  Given that triplet state formation is the result of charge recombination 

of a primary radical ion pair [20, 50], it appears certain that P680* and P684* have in 

common that they serve as primary electron donor states.  Second, the permanent dipole 

moment change for the S0→P680* and S0→P684* transitions are identical within 

experimental uncertainty, f⋅Δμ ~ 0.9 D, Table 2.  Third, the linear pressure rates of −0.12 

cm-1/MPa and −0.15 cm-1/MPa for the 680 nm and 684 nm absorption bands, 

respectively, are nearly the same.  We note that this shift rate is linearly proportional to 

the local compressibility κ [42] so that, all other things being equal, a ~ 20% difference in 
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κ would account for the difference between the two shift rates.  Fourth, the fluorescence 

line narrowed spectra obtained with laser excitation wavelengths between 679 nm and 

686 nm exhibited identical vibronic structures (vibrational frequencies and relative 

vibronic intensities) [31].  This is consistent with the observation that the persistent 

NPHB spectra in frames A-D of Figure 6 are essentially independent of λB.  More 

specifically, the hole spectra can be fitted using the same set of electron-phonon coupling 

parameter values for both the 680 and 684 nm states (Table 1).  Examples are shown in 

Figure 7 for λB = 680 nm and 686 nm. 

 The above results establish that the properties of the 680 nm and 684 nm states 

are very similar.  Such similarity would not be expected if the latter state was localized 

on a single chlorin molecule while P680* is delocalized over P1 and P2 and other 

pigments [9].  One has, therefore, an additional argument against the 684 nm state being 

localized.  On the other hand, the results support the P680-P684 (gross structural 

heterogeneity) model.  In this model the excitonic compositions of the 680 nm and 684 

states are, on average, similar; this despite the 4 nm shift that may be due mainly to non-

excitonic interactions (dispersion, van der Waals, H-bonding). 

B.  Simulation of triplet bottleneck hole-burned (TBHB) spectra with 

dispersive charge separation kinetics.  The results in Figure 6 show that both persistent 

NPHB and transient TBHB spectra can be generated throughout the 680 nm and 684 nm 

absorption bands.  In the first hole burning studies of the isolated PS II RC, in which λB 

was near the maximum of the 680 nm absorption band, the TBHB spectra were assigned 

to P680*, the primary electron donor state [20, 28].  The persistent NPHB was attributed 

to a Qy state localized on Pheo1 for reasons given above.  As a result, the 680 nm 
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absorption band was proposed to be due mainly to P680 but with a significant 

contribution from Pheo1, whose absorption is quasi-degenerate with that of P680.  In 

view of the hole burned spectra presented here for λB = 684 and 686 nm (Figure 6), one 

might propose, with the P680-P684 model in mind, the same scenario for the 684 nm 

absorption band. 

 Recent results, however, suggest an alternative model in which (for both the 680 

nm and 684 nm bands) the 'same' Qy state is responsible for both NPHB and TBHB.  (In 

this model the existence of P680 and P684 due to gross heterogeneity is retained.)  First, 

the photon echo data (1.3 K) of Prokhorenko and Holzwarth [11] strongly indicate that 

the kinetics of primary charge separation are highly dispersive, with time constants 

ranging from a few nanoseconds to a couple of picoseconds.  Even for the most efficient 

nonphotochemical hole burning systems the rate constant is only ~ (10 ns)-1 [51].  Thus, 

with the just mentioned dispersive kinetics for charge separation, the quantum yield for 

NPHB would vary over several orders of magnitude and the most efficient 

nonphotochemical hole burning RCs would also have the highest fluorescence quantum 

yields.  We note that Groot et al. [52] reported a fluorescence quantum yield of 0.07 for 

RC-6.  Second, and as pointed out earlier, all calculations on the Qy excitonic structure of 

the core chlorins do not predict a transition highly localized on Pheo1. 

 In using the alternative (new) model to simulate the TBHB spectra in Figure 6 a 

distribution function that describes the dispersion of charge separation times (or, 

equivalently, the distribution of zero-phonon linewidths; 1 ps→ 5 cm-1) is required.  The 

Weibull function W(x) = αxα-1exp(−xα) was chosen, in part, because it provides an 

acceptable description of the shorter charge separation times reported by Prokhorenko 
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and Holzwarth [11].  To reduce the number of free parameters, the value of α was taken 

to be the same for both the 680 nm and 684 nm states, which is reasonable within the 

P680-P684 model.  In addition, the electron-phonon coupling parameters for both states 

were then taken to be the same and independent of burn wavelength.  With reference to 

Eqs. 3 and 5, the quantum yield for charge separation can be set equal to unity since the 

TBHB spectra were obtained under conditions which ensure that only RCs with charge 

separation times much shorter than a few ns (Chl a natural radiative lifetime) contribute.  

Thus, the simulations with Eq. 5 simply involved allowing for a distribution (Weibull) of 

widths for the zero-phonon line shape function (lR =0 in Eq. 3).  We note that this width is 

automatically added to the widths of the phonon sideband transitions associated with the 

17 cm-1 and 80 cm-1 modes.  The relative values of the burn intensities for each burn 

wavelength were not adjustable parameters, i.e. they were determined by the 

experimental intensities. 

 The simulated spectra (red curves) are compared against the experimental TBHB 

spectra in frames A, B and C of Figure 8 for λB = 680, 684 and 686 nm, respectively.  A 

surprising and interesting finding was that the values of the electron-phonon coupling and 

SDF parameters (see Table 1) that provide reasonable fits to the persistent NPHB spectra 

(examples shown in Figure 7) also provide acceptable fits to the TBHB spectra.  The 

Weibull distribution function (α = 1.2) that led to these best overall fits is shown in 

Figure 9.  Note that it is offset along the abscissa.  The reason for the offset is that the 

TBHB spectra were obtained after saturating persistent NPHB at λB (see section 2).  This 

protocol was originally introduced to eliminate interference from NPHB due to Pheo1 to 

the TBHB spectra of P680 [20].  What this means for the model being considered is that  
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Figure 9.  Weibull distribution of the homogeneous ZPL widths used in this work.  

Distribution is offset along the ZPL width axes by 0.2 cm-1 and peaked at 0.6 cm-1 (9 ps 

primary charge separation time).   
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the RCs with the slowest charge separation kinetics have been burned away (persistently) 

and, therefore, do not contribute to the TBHB spectra.  The offset was an adjustable 

parameter; its value in Figure 9 is 0.2 cm-1 (25 ps).  Thus, only RCs with a charge 

separation time shorter than ~ 25 ps contribute to the TBHB spectra.   

 For all λB values a distribution of ZPL widths gave considerably better fits than a 

single ZPL width (charge separation time).  This can be seen for λB = 686 nm by 

comparing the spectra in frame C with those in frame D (fixed ZPL width), Figure 8.  

(The spectra for the lowest burn intensity are not shown in frame D because of very poor 

agreement between the observed and simulated spectra.)  The red and blue curves in 

frame D were calculated, respectively, with Huang-Rhys factor S17 = 1.5 and 1.25.  The 

simulated spectra in frame D reveal the problem encountered with all burn wavelengths; 

namely, that it is impossible to achieve acceptable fits to both the phonon sideband hole 

(PSBH) structure and the zero-phonon hole (ZPH) when the width of the ZPL is assigned 

a constant value.  The increase in width of the ZPH with increasing burn intensity in the 

simulated spectra shown in frame D is due to fluence broadening [53, 54], which is 

accounted for in the hole burning theory used.  The fits of the simulated spectra shown in 

frame C, obtained with a distribution of charge separation times, are clearly superior.  

Now the increase of ZPH width with increasing burn intensity is due to both fluence 

broadening and spectral dynamics (the induced absorption rate is inversely proportional 

to the width of the ZPL which, in turn, is inversely proportional to the primary charge 

separation time).  The agreement between the simulated and experimental spectra 

obtained with distributed charge separation kinetics and λB = 684 nm is also quite 

satisfactory, frame B of Figure 8.  This is also the case for λB = 680 nm, frame A.  The 
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apparent discrepancies at ~ 684 nm (also seen for λB = 682 nm, not shown) do not signal 

a problem with the model.  The broad feature near 684 is a satellite hole due to downward 

energy transfer to the lowest energy exciton level of P684-type RCs following excitation 

at 680 nm of the second lowest energy exciton level.  Such energy transfer is not 

accounted for in Eq. 3. 

 The results in Figures 7 and 8 (and others not shown) establish that the persistent 

NPHB spectra and TBHB spectra can be understood in terms of the P680-P684 model 

and a common set of values for the parameters that define the electron-phonon coupling 

and the SDF for both P680 and P684 provided the charge separation kinetics are taken to 

be dispersive.  Of considerable interest is that in the simulation of the TBHB spectra 

dispersive charge separation kinetics results in weak electron-phonon coupling (S17 = 

0.7), while non-dispersive kinetics results in strong coupling (S17 ~ 1.5).  The latter value 

is similar to those reported earlier [28, 36].  In those works it was assumed that the 

kinetics are non-dispersive.  A detailed understanding of how dispersive kinetics results 

in an 'apparent' weakening of the coupling is rather involved because the hole burned 

spectrum consists of four contributions [55]: the ZPH; the real-PSBH that builds, in a 

Franck-Condon sense, on the ZPH; the pseudo-PSBH that is the result of 'sites' whose 

ZPLs lie lower in energy than ωB and which absorb via their phonon sideband.  Hole 

burning ensues following relaxation of the phonons and population of the zero-point 

level; and the phonon structure that builds on the pseudo-PSBH in a Franck-Condon 

sense.  One should also keep in mind that the ZPHs of RCs with the slowest charge 

separation kinetics will saturate (reach maximum depth) first since the induced 

absorption rate is proportional to the charge separation time (or inversely proportional to 
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homogeneous width of the ZPL).  Fluence broadening of the ZPH increases rapidly as 

saturation is approached [53, 54].  In the case of single exponential kinetics, the increase 

of ZPH width seen in frames E-H of Figure 6, with increasing burn intensity would be 

due solely to saturation broadening.  For a given range of burn intensities (starting at the 

shallow burn limit), the greater the increase in width, the larger S17.  To a reasonable 

approximation the Franck-Condon factor for the ZPH is exp(−2S17) [45].  Thus, for a 

given homogeneous width of the ZPH, the burn intensity required to saturate the ZPH 

decreases with increasing S17.  In case of dispersive kinetics, such as described by the 

Weibull distribution in Figure 9, the ZPH broadening is due to both fluence broadening 

and spectral dynamics, the latter associated with charge separation kinetics.  Thus, 

correcting the observed broadening for the contribution due to spectral dynamics would 

lead to less broadening due to fluence broadening and, as a consequence, a lower value of 

S17.  One additional point has to do with the contribution of the ZPH to the spectral 

'pedestal' region of the real-PSBH and pseudo-PSBH.  For a fixed homogeneous width of 

the Lorentzian ZPH, the larger the ratio of the integrated intensity of the underlying 

pedestal to that of the ZPH (which is superimposed on the pedestal), the stronger the 

electron-phonon coupling.  Given the Weibull distribution in Figure 9 and the 2 cm-1 

ZPH width used to fit the TBHB spectra in frame D of Figure 8, it is clear that the 

contribution to the pedestal in the case of dispersive kinetics would be greater than in the 

case of nondispersive kinetics, especially at the later stages of hole burning.  This would 

also lead to a lower value of S17 in the case of dispersive kinetics. 

C.  Excitonic couplings between the core chlorins.  As discussed in the 

Introduction, excitonic calculations [6, 9, 10] based on the X-ray structure of the PS II 

 



www.manaraa.com

 157

RC and guided by the observation that the Qy absorption spectrum spans a range of only 

~ 500 cm-1, as well as an experimental value for the width of the SDF of the core chlorins 

(~ 200 cm-1), indicate that the Qy states of the core cofactors are delocalized over ~ 3-4 

chlorins.  This, despite the fact that the strongest pairwise coupling is only ~ 150 cm-1 

(between P1 and P2).  Jankowiak et al. [9] found that several types of optical spectra (low 

temperature) were best fitted if Pheo2 was decoupled from the other core chlorins (P1, P2, 

Chl1, Chl2, Pheo1).  One has, therefore, a 'pentamer' model for the Qy states.  Decoupling 

would require a significant weakening of the interaction between Pheo2 and Chl2 relative 

to the interaction between Pheo1 and Chl1 (see Figure 1).  Recently, Frese et al. [56] 

reported that f⋅Δμ for the S0→Qx transitions of Pheo1 and Pheo2 are very different, 3.0 D 

and 0.6-1.0 D, respectively.  The difference is most likely due to the 'matrix' induced 

contribution to f⋅Δμ on the D2 side of the RC being much larger than on the D1 side.  

Interestingly, the very recently reported X-ray structure (3.7 Å resolution) of PS II from 

Thermosynechococcus vulcanus revealed that the two carotenoid molecules for the RC 

are located on the D2 side, quite close to Pheo2 [57].  Thus, there are some reasons to 

speculate that Pheo2 could be decoupled, e.g. dielectric screening might lead to 

significant weakening of the Pheo2-Chl2 coupling. 

 It is worthwhile to compare the low temperature absorption spectrum of RC-5 

calculated with the pentamer Hamiltonian given in [9] with the experimental spectrum.  

The shorter dashed curve in frame A of Figure 10 is the calculated spectrum for the core 

chlorins (peripheral Chl not included).  The six underlying dotted curves are the 

absorption bands of the six Qy states.  That of the decoupled Pheo2 is marked by the  
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Figure 10.  Simulations of absorption spectra.  Dotted lines in frame A represent the 

excitonic states (and the state localized on the decoupled Pheo2 at 668 nm; marked with a 

slanted arrow with an asterisk) of the pentamer model by Jankowiak et al. [9] neglecting 

electron-phonon coupling.  Short-dashed line is the sum of the dotted curves.  Long-

dashed line represents the spectrum of the P684-type RCs.  Short- and long-dashed 

curves in frame B are the result of convolution of the respective curves from frame A 

with the single site spectrum.  Thin solid curve is the sum of long- and short-dashed 

curves.  Thick solid curve is the experimental absorption spectrum. Shaded region 

represents the absorption of the peripheral Chl a peaked at ~ 670 nm.  Vertical arrow in 

frame A indicates that the lowest state of P680-type RCs and the second-lowest state of 

P684-type RCs are degenerate. 
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asterisk and is located at 668 nm with a fwhm of 180 cm-1.  The other five bands 

correspond to the delocalized states.  For these states the SDFs of the five coupled 

chlorins were centered at 671 nm (fwhm ~ 180 cm-1) [9], values close to those given in 

[9].  With the P680-P684 model in mind, the shorter dashed curve should be viewed as 

the absorption spectrum of P680-type RCs, less the peripheral Chl.  The longer dashed 

spectrum is that of P684-type RCs, a 4 nm shifted replica of the P680-type spectrum.  

(Based on the action spectra in Figure 2 and the TBHB spectra in Figure 3 we estimated 

that the ratio of intensity of the P680 absorption band to that of the 684 nm band is ~ 2.5.  

This leads to the result that the P684-type RCs contribute ~ 25% of the total absorption, 

in reasonable agreement with the spectra in frame A of Figure 2.)  The two spectra do not 

include electron-phonon coupling.  We used the electron-phonon coupling parameter 

values in Table 1 to define a single site absorption spectrum which was convolved with 

the six inhomogeneously broadened absorption bands of both the P680 and P684 RCs.  

The resulting (summed) spectra are the short dashed (P680) and long dashed (P684) in 

frame B of Figure 10.  Their sum is the thin solid line spectrum, which should be 

compared with the experimental spectrum (thick solid line).  The fit to lower energy of 

the maximum of the 680 nm band is satisfactory.  The discrepancy to higher energy 

(hatched area) is most reasonably assigned mainly to the single peripheral Chl (~ 670 nm) 

that was not included in the simulations, i.e. it seems unlikely that the 684 nm absorption 

band is due to the peripheral Chl.  We note that vibronic transitions that build on the 

origin bands at 680 and 684 nm should make a weak contribution to the absorption at ~ 

670 nm. 
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 Concerning the pairwise excitonic interactions (electrostatic) of the core chlorins 

of the PS II RC, we note that although they are rather small ( ~  150 cm-1), the Qy states 

tend to be delocalized because the larger interactions are comparable in magnitude to the 

differences between the chlorin site excitation energies, as well as the width of the site 

excitation energy distribution functions [8, 10].  (There is no physical basis for asserting 

that all the Qy states are localized, as Diner and coworkers have [58].)  The question 

arises as to whether or not any experimental data indicate that electron-exchange 

coupling contributes significantly to pairwise interactions (the most likely one being 

between P1 and P2).  Such coupling introduces charge transfer character to the excited 

states, as reviewed in [4].  Three indicators for appreciable electron-exchange coupling 

are the electron-phonon coupling strength, the permanent dipole moment change and 

linear pressure shift of the S1(Qy)←S0 transitions.  These three properties are generally 

positively correlated (see references (refs.) [39, 40] and refs. therein).  As discussed in 

those works, the linear pressure rate (Rp) for the S1(ππ*)←S0 transition frequency is ~ 

−0.05 to −0.15 cm-1/MPa for monomer chromophores in glasses and polymers at low 

temperatures, f⋅Δμ ~ 0.4−0.6 D for the Chl a monomer in polymers or a localized Qy state 

and, finally, the total Huang-Rhys factor (St) for low frequency phonons is most often 

less than 1 (weak linear electron-phonon coupling).  As reviewed in [59] for Chl dimers, 

|Rp|  0.3 cm-1/MPa, f⋅Δμ  1 D and St >> 1 (strong coupling) are values which indicate 

that the monomers are strongly interacting with electron exchange coupling making a 

significant contribution.  Examples of such a Chl a dimer state are the red-most antenna 

state of the cyanobacteria Synechocystis PCC 6803 and Synechococcus elongatus at 714 

<

~> ~>
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nm and 719 nm, respectively, for which Rp ~ −0.5 cm-1/MPa, f⋅Δμ ~ 2.4 D and St ~ 2.0 

[39, 40].  The values for P680 and P684 of the isolated PS II RC are ~ −0.14 cm-1/MPa, ~ 

0.9 D and 0.9, values that are inconsistent with appreciable electron exchange coupling 

between the cofactors, in particular P1 and P2.  
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CHAPTER 5 – FREQUENCY-DOMAIN SPECTROSCOPIC STUDY OF THE PS I 

- CP43′ SUPERCOMPLEX FROM THE CYANOBACTERIUM SYNECHOCYSTIS 

PCC 6803 GROWN UNDER IRON STRESS CONDITIONS 

 

A submitted paper that was modified and published in the J. Phys Chem. B 2006, 110, p. 

22436-22446. 

Kerry J. Riley, Valter Zazubovich, and Ryszard Jankowiak 

 

Abstract 

Absorption, fluorescence excitation, emission and hole burning (HB) spectra were 

measured at liquid helium temperatures for the PS I - CP43′ supercomplexes of 

Synechocystis PCC 6803 grown under iron stress conditions and for respective trimeric 

PS I cores.  Results are compared with those of room temperature, time-domain 

experiments (Melkozernov et al, Biochemistry 2003, 42, 3893) as well as with the low-

temperature steady-state experiments on PS I - CP43′ supercomplexes of Synechococcus 

PCC 7942 (Andrizhiyevskaya et al, BBA 2002, 1556, 265).  In contrast to the CP43′ of 

Synechococcus PCC 7942, CP43′ of Synechocystis PCC 6803 possesses two low-energy 

states analogous to the quasi-degenerate states A and B of CP43 of photosystem II 

(Jankowiak et al, J. Phys. Chem. B 2000, 104, 11805).  Energy transfer between the 

CP43′ and the PS I core occurs, to significant degree, through the state A, characterized 

with broader site distribution function (SDF).  It is demonstrated that the low temperature 

(T = 5K) excitation energy transfer (EET) time between the state A of CP43′ (IsiA) and 
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the PS-I core in PS I - CP43′ supercomplexes from Synechocystis PCC 6803 is about 60 

ps, which is significantly slower than the EET observed at room temperature.  Our results 

are consistent with fast (≤ 10 ps) energy transfer from state B to state A.  Energy 

absorbed by the CP43′ manifold has, on average, a greater chance of being transferred to 

the reaction center (RC) and utilized for charge separation than energy absorbed by the 

PS I core antenna.  This indicates that energy is likely transferred from the CP43′ to the 

RC along a well-defined path and that the “red antenna states” of the PS I core are 

localized far away from that path, most likely on the B7-A32 and B37-B38 dimers in the 

vicinity of the PS I trimerization domain (near PsaL subunit).  We argue that the A38-

A39 dimer does not contribute to the red antenna region. 
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Introduction 

The evolution of photosynthetic organisms has resulted in the development of 

different strategies to adapt their photosynthetic apparatuses to various conditions of 

illumination or nutrient supply.  One such strategy involves changing the extent and 

structure of phycobilisomes [1, 2].  In an iron-deficient environment, the phycobiliprotein 

content and photosystem I (PS I) to photosystem II (PS II) ratio are reduced [3].  This is 

compensated by an accumulation of IsiA (CP43′) [4-6] protein, a chlorophyll a (Chl a) 

binding protein genetically very similar to CP43 of photosystem II (PS II) [7, 8].  In 

particular, the typical reaction of some cyanobacteria to iron stress is to surround the 

(trimeric) PS I core with 18 [7, 9, 10] (or 17 for the PS I lacking PsaF and PsaJ subunits 

[11]) copies of CP43′.  The PS I core monomer contains protein subunits PsaA … PsaX; 

most of the chlorophyll (Chl) molecules, including the reaction center (RC) chlorophylls, 

are bound to PsaA and PsaB subunits, which are approximately related to each other by 

C2 symmetry [12].  An arrangement involving 18 copies of CP43′ was observed for 

Synechococcus PCC 7942 [9] and Synechocystis PCC 6803 [10].  It is interesting that a 

similar structural arrangement was also adopted by deep-water (low-illumination) strains 

of Prochlorococcus marinus [13], although, in this case, antenna complexes and probably 

also the PS I core contain Chl b2 (divinyl derivative of Chl b with similar spectral 

properties).  Recently, several groups engaged in studying spectral properties and energy 

transfer dynamics in CP43′ and PS I - CP43′ supercomplexes of cyanobacteria [14-16].  

These works agree that the CP43′ ring effectively transfers energy (within 2 ps at room 

temperature) to the PS I core, although an increase of total trapping time (compared to 

separate PS I cores) was also observed [14, 16].  Note, however, that the transient 
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difference absorption spectra (Figure 5 in ref. [14]) indicate that a large fraction of 

excitation remains at ~ 680 nm even after 10 ps.  Thus, 2 ps may be the fastest, not the 

average CP43′ → PS I core excitation energy transfer (EET) time.  The high-resolution 

structure of the CP43′ complex is not known, but the three-dimensional structure of the 

PS I - CP43′ supercomplex has been modeled by merging low-resolution cryo-

microscopy data [17] with available high-resolution data on PS I from 

Thermosynechococcus elongatus [12] and CP43 from PS II [18], see Figure 1.  Only 12 

chlorophyll molecules per CP43 were identified in ref. [18] and only [11] are depicted in 

Figure 1 and in ref. [17], while according to the more recent X-ray diffraction data there 

are 13 [19, 20] or even 14 [21] chlorophylls per CP43.  However, one should be careful 

comparing CP43 and CP43′ since CP43′ has ~ 130 fewer amino acids than CP43 due to 

the absence of a hydrophilic loop joining the lumenal ends of the transmembrane helices 

5 and 6 [17].  That said, if one assumes that the CP43′ complexes bind chlorophylls in the 

same way as CP43, then the closest distances between Chl a molecules of adjacent CP43′ 

complexes may be as small as 10 Å, which could result in sub-picosecond energy 

equilibration within the CP43′ ring at room temperature.  It also appears that there are 

three regions per PS I monomer where Chl a molecules belonging to CP43′ are close 

enough (within ~ 20 Å) to the Chl a molecules of the PS I core to justify excitation 

energy transfer on an ~ 2 ps timescale at room temperature [7, 14, 16, 17].  One of the 

intriguing results of [17] is that one of these contact regions of the PS I core incorporates 

chlorophylls labeled B31, B32 and B33 (labeling according to [12]), which, as argued in 

ref. [12], is a possible origin of one of the red antenna states of the PS I core (see below).  
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The second region includes chlorophylls J1-J3 and the third region, chlorophylls A8, 

A10, A12-A14, A18 and K2.  Note that six CP43′ complexes are in non-equivalent 

positions relative to the PS I core monomer (see Figure 1; see also [17]) and, therefore, 

the reported CP43′ → PS I core energy transfer rates may be an average of several 

different rates. 

Spectral hole burning (SHB) has been successfully applied to various 

photosynthetic complexes, including trimeric cyanobacterial PS I [22-24] and CP43 

isolated from PS II of higher plants [25, 26].  The widths of spectral holes are inversely 

proportional to the lifetimes of the excited states.  This feature makes SHB very useful in 

exploring energy transfer processes in photosynthetic complexes.  In case of the CP43, 

SHB was applied to demonstrate that this complex possesses two quasi-degenerate, low-

energy states, labeled A and B in [25], characterized by different inhomogeneous widths 

and different permanent dipole moment differences between ground and excited state, as 

well as different intersystem crossing yields.  For PS I, SHB was mainly employed to 

resolve different red antenna states (i.e. the antenna states absorbing at lower energy than 

the primary donor, P700) and to prove that these states originate from aggregates of 

strongly coupled chlorophyll molecules (and not from monomeric Chl a whose red-

shifted energies are the result of peculiar interactions with the protein environment [22-

24]).  Three red antenna states were resolved by SHB for Synechococcus elongatus [22] 

and two for Synechocystis PCC 6803 [23, 24].  It is interesting that the lowest-energy 

states of the PS I of the above two cyanobacteria, C719 and C714, respectively, have 

very similar properties and therefore most likely originate from the same chlorophyll 

aggregate  
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Figure 1.  (Modified from [17].)  Arrangement of trimeric PS I and CP43′ antenna 

complexes in the PS I - CP43′ supercomplex, based on X-ray diffraction data for PS-I of 

Synechococcus elongatus [12] and CP43 [18] and low-resolution cryomicroscopy data 

[17].  Regions of most probable CP43′ to PS I core energy transfer are labeled by roman 

numbers.  Arabic numbers 1-6 refer to CP43′ complexes in non-equivalent positions in 

relation to the PS I core monomer.  Core chlorophyll molecule labeling is according to 

[12].  Dotted arrows indicate most likely paths of the CP43′ to PS I core energy transfer.  

Dark solid circle indicates the center of the PS I trimer.
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[22-24].  However, there is no agreement regarding the correspondence between the red 

antenna states and particular chlorophyll aggregates.  So far, at least 12 different Chl a 

aggregates were suggested and several combinations of them were considered [22, 27-

31].  The lack of agreement concerning the red state assignments is due to the problems 

associated with calculating inter-pigment electrostatic couplings, and especially 

chlorophyll site energies, with sufficient precision. 

Although the works [14-16] provided extensive and valuable data on the 

functioning of the PS I - CP43′ supercomplex, several issues remain unresolved.  First, to 

achieve a satisfactory fit to the absorption spectra of PS I - CP43′ supercomplex from 

Synechococcus PCC 7942, it had to be assumed that there are 17-18 Chl a molecules per 

CP43′ complex [15], rather than 13 as suggested by structural data on CP43 [18].  The 

results of [15] also indicated that one of the low-energy states (i.e. B state [22]) present in 

CP43 could be missing in CP43′.  It is unclear if those differences between CP43 and 

CP43′ are real or resulted from the partial disruption of the samples during the 

preparation/isolation procedures.  Second, existing data on energy transfer for both 

Synechococcus PCC 7942 [16] and Synechocystis PCC 6803 [14] were only obtained at 

room temperature using ultra-fast spectroscopy which, by its nature, lacks spectral 

resolution.  Therefore, the goal of this work is to utilize high resolution spectral hole 

burning (SHB) to gain additional insight into the properties of PS I - CP43′ complexes 

from Synechocystis PCC 6803 by comparing the SHB results with those previously 

obtained by means of time-domain spectroscopy [14].  In addition, SHB results are 

compared with the steady-state spectroscopy results obtained for Synechococcus PCC 
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7942 [15].  Here the goal is to determine if the lowest-energy states similar to those 

observed in the isolated CP43 from PS II [22] are present in CP43′ and, if so, how these 

states affect energy transfer from CP43′ to the PS I core.  The details of energy transfer in 

the PS I - CP43′ supercomplex from Synechocystis PCC 6803 are of particular interest 

since the B31-B32-B33 trimer (see above) is absent and/or significantly disrupted in 

Synechocystis PCC 6803.  This could strongly affect or even eliminate one of possible 

CP43′ → PS I core energy transfer channels.  The lack of this trimer is supported by the 

absence of the histidine residues coordinating Chls B31-B32-B33 [24].  

Experimental 

PS I trimers and PS I - CP43′ supercomplexes were isolated as described in [14] 

and stored at –77 ºC.  Immediately before the experiment, a sample/buffer solution was 

mixed with glycerol at a ratio 1:2 in order to ensure formation of good-quality glass upon 

cooling.  This mixture was placed into plastic vials 9 mm in diameter and slowly frozen 

in the dark in a Janis 10DT liquid helium cryostat.  Temperature was measured and 

stabilized with a Lakeshore model 330 temperature controller.   

Absorption spectra were measured with a Bruker IFS-120HR Fourier-transform 

spectrometer with the resolution of 2 cm-1.  Broadband fluorescence excitation spectra 

were measured while scanning the laser (COHERENT CR-699 with intra-cavity etalons 

removed, i.e. with a line-width of several GHz) wavelength over the whole dye range 

(LD688 dye, 650-720 nm) and collecting the fluorescence at λ > 730 nm with the 

photomultiplier (Hamamatsu), positioned at 900 angle with respect to the excitation beam.  

Fluorescence excitation spectra were corrected to take into account the (weak) 

wavelength dependence of the transmission of neutral filters.  Emission spectra were 
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measured with ~1 nm resolution using a McPherson 2061 1-m focal length 

monochromator with Princeton Instruments diode array as a detector.  Samples were 

diluted to OD680 < 0.1 per 1 cm thickness (to avoid re-absorption) and placed into glass 

vials with a diameter of 1.5 mm; the vials, in turn, were placed into a Janis SVT-100 

cryostat.  Fluorescence was excited by Ar-ion laser with about 15 mW at 514 nm.  The 

collected emission spectra were corrected for the response function of the 

spectrometer/detector system.   

Persistent hole spectra are the difference between post-burn and pre-burn 

absorption spectra.  Triplet bottleneck hole burned spectra (measured after saturation of 

persistent holes) are the difference spectra between the absorption spectra measured with 

the laser on and that measured with the laser off.  Non-resonant satellite hole spectra 

were measured with 2 cm-1 resolution using Bruker IFS-120HR spectrometer.  Holes 

used for constructing the hole burning action spectrum (i.e. hole depth dependence on the 

wavelength for fixed burn dose) in absorption/transmission mode were measured with the 

same spectrometer at 0.5 cm-1 resolution.  Burn intensities and times are reported in text 

and figure captions.  Burn intensities were adjusted using neutral density filters (LOMO) 

and laser power stabilizer/controller (BEOC).  The COHERENT CR-699 ring dye laser 

with a line-width of several GHz was used for hole burning.  The lifetime(s) of the lowest 

energy state(s) of CP43’ were determined using the CR-699-29 (Autoscan) laser at 0.2 

GHz resolution in fluorescence excitation mode.  After a series of burns, the sample was 

heated in the dark to ~ 150 K in order to refill the holes.  After the sample cooled back to 

4.2 K, the absorption spectrum was measured and compared to that obtained at the very 

beginning of the experiment, to ensure that the sample was still intact and the spectral 

holes had been fully filled (i.e. erased). 
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Results 

Absorption spectra.  The 5 K absorption spectra of PS I - CP43′ supercomplexes 

(a) and corresponding PS I cores (b) are presented in Figure 2A.  The spectrum of PS I 

cores is almost identical to the spectra of Synechocystis PCC 6803 PS I reported in [23, 

24], although the PS I explored in these works was obtained from a different source.  

Similar intensities of the red antenna state region in this work and [23, 24] indicate that 

the PS I cores in this work are indeed trimeric.  Curve (c) in Figure 2A is the difference 

spectrum between absorption spectra of PS I - CP43′ and the PS I trimeric core.  Before 

calculating the difference spectrum, the spectrum of the PS I core was renormalized so 

that the low-energy edges of the two spectra matched as closely as possible.  (Assuming 

that absorption spectrum of the CP43′ ought to resemble that of the CP43 of higher 

plants, both should have negligible absorption at λ > 695 nm.  Thus, all absorption at λ > 

695 nm should belong to the PS I core.)  Therefore, the difference spectrum (curve c) 

should be treated as the absorption spectrum of CP43′ complexes.  The main broad 

absorption band is located near 668.3 nm with an additional narrow peak at 681.2 nm; the 

intensity ratio of the two bands is ~ 2:1.  There is also a prominent shoulder near 675-676 

nm.  These spectral features are similar to those observed for CP43, where the respective 

bands were observed at 669, 682.4, and ~ 678 nm [25].  The spectrum of CP43 from [25] 

is shown in the insert of Figure 2A (dashed line) along with the difference spectrum 

assigned to the CP43′ complex (solid line).  It is apparent that the absorption spectra of  
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Figure 2. Frame A: 5 K absorption spectra of the PS I - CP43′ supercomplex (a), PS I 

core (b) and their difference spectrum ascribed to CP43′ (c = a−b).  Insert compares 5 K 

absorption spectra of the CP43′ (solid curve, (c) in the main picture) and CP43 (dashed 

curve).  Frame B: 5 K fluorescence excitation spectra of the PS I - CP43′ supercomplex 

(d), PS I core (e) and their difference spectrum ascribed to CP43′ (curve f).  Asterisk in 

Frames A and B refers to a weak feature at ~ 695 nm, see text.  Frame C: Absorption (b) 

and fluorescence excitation (e) spectra of the PS I core.  Frame D: Absorption (a) and 

fluorescence excitation (d) spectra of the PS I - CP43′ supercomplex. 
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 CP43′ and CP43 are fairly similar, i.e. both contain a weak narrow band near 682 nm.   

Fluorescence excitation spectra.  The fluorescence excitation spectra of the PS I 

- CP43′ supercomplexes (curve d) and trimeric PS I cores (e) are presented in Figure 2B.  

Since a significant part of the energy harvested by the bulk antenna is transferred to the 

RC and not to the red emitting states, the shapes of spectra (d) and (e) differ from the 

shapes of absorption spectra (a) and (b), respectively.  Different shapes indicate that 

excitation may not fully equilibrate over the whole antenna system before being 

transferred to either the RC or red states at low temperatures.  In other words, the 

fluorescence excitation spectrum is proportional to the absorption spectrum of a sub-

ensemble of chlorophylls which, in the end, transfer energy to the red antenna states and 

not to the RC.  A similar effect was reported for trimeric PS I of Synechocystis PCC 6803 

obtained from a different source [24] and for the isolated reaction center of photosystem 

II [32]. The difference between spectra (d) and (e) corresponds to the fluorescence 

excitation spectrum of the CP43′ (see curve f).  As expected, spectrum (f) closely 

resembles the absorption spectrum of CP43′ (curve c).  It contains a feature at 681 nm, 

although that feature is not as well resolved as in spectrum (c).  As in the case of the 

absorption difference (spectrum c), spectrum (f) also reveals a weak feature near 695 nm.  

Therefore, we suggest that this feature is not a renormalization/subtraction artifact, but 

that it originates from the shift of the band of some core pigment(s) due to the interaction 

with CP43′. 

Emission spectra.  Next, the non-selectively excited (at 514 nm) emission 

spectra of PS I -CP43′ supercomplexes and PS I cores were measured.  The emission 
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spectra of PS I - CP43′ supercomplexes obtained at various temperatures are shown in 

Figure 3.  The spectra are qualitatively very similar to those observed for the PS I - CP43′ 

complex of Synechococcus [15].  The main fluorescence band at 720 nm with FWHM of 

25 nm (T = 5 K) is assigned to the emission from the C714 red antenna state of the 

Synechocystis PS I core in agreement with ref. [23].  A similar but slightly narrower band 

(FWHM=22 nm) red-shifted by 1 nm, was observed for the PS I core sample (data not 

shown).  The additional 685.2 nm band, observed in Figure 3, is absent in the emission 

spectra of the PS I core and therefore most likely belongs to the CP43′.  Its width is about 

7 nm (150 cm-1) when measured as twice the higher-energy half-width of the band.  The 

ratio of the integrated areas of the 720 nm band and the 685 nm band (integrated from 

670 nm to 800 nm) is at least 15:1 at 4.2 K.   

Hole-burned spectra.  In the case of isolated CP43, two quasi-degenerate low-

energy states were reported [25].  States A and B were resolved as satellite holes using 

triplet bottleneck and persistent hole burning, respectively.  (Satellite holes form due to 

hole-burning following excitation energy transfer from directly excited higher-energy 

chlorophylls to lower-energy chlorophylls.)  To verify whether similar states are present 

in CP43′, we measured the satellite hole spectra for PS-I-CP43′ and PS-I core samples.  

Satellite persistent holes for PS I - CP43′ (a) and PS I core (b) obtained at 665 nm with 

laser power density of ~ 460 J/cm2 are presented in Figure 4.  (PS I core hole spectrum 

was normalized so that the PS I core absorption is equal for both samples.)  For the 
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Figure 3.  Thin noisy curves: emission spectra of the PS I - CP43′ supercomplex at 

various temperatures.  Bold curve: Emission spectrum of the CP43 of higher plants [25]. 
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Figure 4.  Spectral holes in the absorption spectra resulting at 5 K from the illumination 

at 665 nm with ~ 460 J/cm2 for PS I - CP43′ supercomplex (a) and PS I core (b).  Short-

dashed lines point at the satellite hole features equally represented in both spectra.  Long-

dashed line refers to the hole at 684 nm, which is significantly stronger in spectrum (a). 
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CP43′- PS I supercomplex, the deepest satellite hole is at 693 nm, but there are also 

prominent holes at 676, 681, 684 and 698 nm and a broad lowest-energy hole at 713 nm.  

The 713 nm hole is assigned to the lowest-energy “red state” of the core, i.e. C714 state 

in agreement with ref. [23].  All of these features (except for the one at 676 nm, which is 

obscured by the pseudo-phonon sideband of a resonant hole) could be also observed at 

the same wavelengths upon irradiation at 670 nm (data not shown), indicating that they 

are not the vibronic replicas of the resonant hole.  A comparison of the hole spectrum (a) 

to that of the PS I core (b) reveals that most of the satellite hole structure is also 

preserved for the PS I cores.  The main difference is that the 684 nm feature is several 

times stronger in the PS I - CP43′ supercomplex.  (Interestingly, the 681 nm persistent 

satellite hole obtained at similar experimental conditions was significantly deeper in the 

PS I core of Synechocystis PCC 6803 grown by a different group [23].)  No triplet 

bottleneck satellite holes could be observed. 

Zero phonon hole (ZPH) action spectra.  In order to gain additional insight 

about the number and properties of the lowest-energy states of the CP43′, we measured 

the hole burning action spectra of the PS I - CP43′ supercomplexes and the PS I cores.  

Hole burning action spectrum is the dependence of the hole depth on the burn wavelength 

for a fixed burning dose [33].  This type of spectroscopy can easily resolve the lowest-

energy states of photosynthetic complexes [25, 32, 33].  ZPH action spectra for the PS I - 

CP43′ supercomplex and the PS I core are presented in Figure 5A.  As in the case of the 

absorption spectra (see Figure 2), the PS I core ZPH action spectra were normalized to 

make the PS I core absorption equal for both samples.  Only very shallow holes were  
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Figure 5.  Frame A: 5 K hole burning action spectra (hole depth versus wavelength for 

fixed burn dose) of PS I - CP43′ supercomplex (diamonds) and PS I core (triangles).  

Burn dose was 5 J/cm2.  Frame B: Difference of the two action spectra from the Frame A 

(action spectrum of the CP43′) and its best fit. 



www.manaraa.com

185 

observed for both the PS I - CP43′ supercomplex and PS I core at wavelengths between 

695 and 705 nm.  For the results presented in Figure 5, the burn time was 1 minute and 

the intensity 80 mW/cm2, i.e. the burning dose was ~ 5 J/cm2.  Such irradiation resulted 

in ~ 3% fractional hole depths for the PS I - CP43′ supercomplex, which corresponds to ~ 

10% holes in the CP43′ spectrum (see Figure 2A).  The irradiation of PS I - CP43′ 

complexes with 0.5 J/cm2 was attempted but did not yield holes with reasonable 

fractional depth and/or signal to noise ratio, at least at 0.5 cm-1 resolution (see below). 

Note that the irradiation with less than 0.5 J/cm2 was employed with the isolated CP43 

[25] in order to burn ~ 10%-deep holes.  This is the first indication (see Discussion for 

details) that the lifetime of the state(s) exhibiting persistent spectral hole burning is 

significantly shorter in CP43′ within the PS I - CP43′ supercomplex than in isolated 

CP43.  It is interesting to note that even for the increased burning dose of 20 J/cm2 the 

action spectra did not exhibit significant maxima at 693 and 698 nm, where the deepest 

satellite holes were observed in Figure 4.  While the ZPH-action spectrum of the PS I 

core (triangles in Figure 5A) does not contain prominent features between 670 and 692 

nm, the same cannot be said about ZPH- action spectrum obtained for the PS I - CP43′ 

supercomplex (diamonds).  The difference of the two ZPH-action spectra (Figure 5B; 

circles) has two maximums at 682.5 nm and at ~ 676 nm.  These two features must 

belong to the CP43′ complex.  The maximum at ~ 682.5 nm is close to the wavelength of 

the non-resonantly burned hole at ~ 684 nm, which is strong in PS I - CP43′ and weak in 

PS I core (see Figure 4).  While the quality of the action spectrum does not allow us to 

make definite conclusions concerning the number of quasi-degenerate states at ~ 682-685 

nm, a better fit to the difference of the two ZPH-action spectra (solid line in Figure 5B) 
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involves three bands with absorption peaks / inhomogeneous widths (FWHM) of 675.6 

nm / 80 cm-1, 682.6 nm / 70 cm-1 and 683.9 nm / 160 cm-1, respectively.  The latter two 

bands most likely correspond to states B and A, respectively, observed in the isolated 

CP43 [25].  The relative intensities of the two bands in the ZPH-action spectrum are also 

fairly similar to those reported for isolated CP43.  The broader of these two bands is most 

likely the main origin of the 685 nm emission. 

Energy transfer times.  To determine the lifetime(s) of the lowest state(s) of the 

CP43′ complex (CP43′ → PS I core energy transfer times), we measured the widths of 

shallow holes burned into the absorption spectrum of the PS I - CP43′ supercomplex at 

679-688 nm.  Holes were measured in fluorescence excitation mode.  If the CP43′ 

complex possesses two states in this region, the contribution of the narrow 682.6 nm 

band to the lower-energy part of this region should be negligible.  The shallow holes 

burned in this region exhibited widths of about 7-8 GHz at 5 K.  The pre-burn absorption 

spectrum and the hole (burned at 685.5 nm with 0.1 J/cm2) measured in fluorescence 

excitation mode along with its Lorentzian fit, are shown in Figure 6.  The fractional depth 

of this hole is 2.5% and the width is 7.3 GHz.  Assuming that about 2 GHz at 5 K is the 

contribution from pure dephasing [25] one could arrive at a CP43′ → PS I core energy 

transfer time of about 70 ps.  It is evident from Figure 6, however, that in addition to the 

narrow Lorentzian hole described above, the spectra contain another, much broader 

component.  The latter observation is in agreement with the hole-growth curve obtained 

for the very same hole and depicted in the insert of Figure 6, which yields fractional hole 

depth of ~ 4% instead of 2.5%. (The hole-growth curve corresponds to the decrease in  
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Frame 6.  High-resolution hole spectrum (a) with respective pre-burn spectrum (b) 

measured in fluorescence excitation mode (noisy curves) and a Lorentzian fit (smooth 

thick curve) to the narrow spectral hole.  FWHM = 7.3 GHz, T = 5 K, burning 

wavelength was 685.5 nm and the burn dose was 0.1 J/cm2.  Insert: Growth curve for the 

hole depicted in the main frame. 
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fluorescence signal while sample is irradiated with a laser of constant wavelength.)  The 

similar behavior was observed for all holes burned in the 679 - 688 nm wavelength 

region, with the relative intensity of the broad contribution varying from spectrum to 

spectrum without apparent correlation with burn wavelength (or dose; several additional 

irradiation doses were employed at some wavelengths).  Therefore, we did not attempt to 

assign that contribution, or to derive any quantitative data characterizing it.   

The narrow ~ 7 GHz components of the holes burned with 0.1 J/cm2 in 

fluorescence excitation mode were used to construct a different action spectrum, which 

can be compared to the one obtained in transmission/absorption mode (see Figure 5).  

The results are presented in Figure 7.  Surprisingly, the shape of the low-irradiation-dose 

ZPH-action spectrum (solid triangles) closely resembles the shape of the broader band 

(state A) used to fit the higher-dose, lower-resolution transmission mode action spectrum 

presented in Figure 5.  State B does not seem to contribute significantly to the high-

resolution low-irradiation action spectrum.  (This cannot be explained by sample 

degradation, since the absorption spectrum was measured after the action spectrum 

depicted in Figure 7 had been obtained, and that spectrum had the same shape as 

spectrum (a) in Figure 2A, which was acquired in the beginning of the experiment.) 

Discussion 

Low-energy states of the CP43′.  The main difference between the CP43′ 

absorption spectrum shown in Figure 2A (curve c) and that reported in ref. [15] is the 

presence of a narrow band peaked at 681.2 nm.  The inset compares curve (c) with the 

absorption spectrum of CP43 [25] (dashed curve).  Comparison reveals that spectrum (c) 

resembles the spectrum of CP43 much more closely than that measured for the 

Synechococcus PCC 7942 CP43′ [15].  Our results are also consistent with the absorption  
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Figure 7.  The hole burning action spectra (hole depth versus wavelength for fixed burn 

dose) of PS I - CP43′ supercomplex obtained with 5 J / cm2 in absorption / transmission 

mode (0.5 cm-1 resolution; open diamonds) and with 0.1 J / cm2 in fluorescence 

excitation mode (0.2 GHz resolution; solid triangles).  The lower-dose action spectrum is 

normalized to fit the solid curve, which is the broader component of the fit to the higher-

dose action spectrum (see Fig. 6). 
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spectrum reported for Synechocystis PCC 6803 at 77 K [34].  We hasten to add that the 

spectra in [15] and [34] were obtained directly for the isolated CP43′ complexes.  

Although the 681.2 nm band is somewhat weaker than the 682.5 nm band observed in 

CP43 [25], this characteristic band is definitely present in curve c = a−b assigned (vide 

supra) to the CP43′ complex.  Thus, by analogy with CP43, one could suggest that CP43′ 

possesses two quasi-degenerate lowest-energy states.  Further support for this assignment 

is provided by the hole burning action spectra shown in Figure 5 and emission spectra in 

Figure 3.  Since the HB data revealed that for the lowest-energy state(s) of CP43 the 

electron-phonon coupling is weak [25, 26], it is unlikely that the emission peaked at 

685.2 nm originates from the narrow absorption band peaked at 681.2 nm.  Note that a 

Stokes shift of only ~ 6 cm-1 (0.2-0.3 nm) was observed for the lowest-energy states of 

CP43 [25].  Another important point about the emission spectra presented in Figure 3 is 

the relatively small intensity of the 685 nm emission in comparison with the major 

emission band near 720 nm.  This comparison indicates that the CP43′ complexes 

transfer energy effectively to the PS I core.  

Energy transfer from CP43′ to the PS I core: analysis of the absorption and 

fluorescence excitation spectra.  It is instructive to compare the integral intensity ratios 

of spectra (a) and (b) with (d) and (e), respectively, of Figure 2.  The intensity ratio of 

spectra (a) and (b), integrated between 600 and 730 nm, is 1.58.  The integrated intensity 

ratio of spectra (d) and (e) is 1.33 (for 650-720 nm).  The ratio difference of about 20% 

exceeds the error that may result from the renormalization of spectra being compared or 

from difference in integration ranges. (We confirmed that the ratio of areas below (a) and 

(b) is still ~ 1.6 for the 650-720 nm integration range.  This can also be considered as an 



www.manaraa.com

191 

indication that the spectra in frame A are indeed superimposed properly.)  Let us consider 

several different (d) to (e) integral intensity ratios: 

The ratio of ~ 1 would require that all of the energy absorbed by the CP43′ is 

either directly emitted from the CP43′ or transferred selectively to the RC (and consumed 

for charge separation) and not to the emitting red states of the core.  This is because the 

experimental setup used to measure fluorescence excitation spectra strongly favors 

registration of emission at λ > 730 nm over the emission of CP43′, expected at 682-685 

nm.  Thus, in this case, excitation energy would not be transferred to the emitting red 

state of PS I core.  

A ratio of 1.58 (vide supra) would mean that all of the energy absorbed by the 

CP43′ is transferred to the core and then distributed between the RC and the red states in 

exactly the same manner as in isolated PS I core.  In other words, the energy would 

equilibrate between CP43’ manifold and higher-energy chlorophylls of the PS I core 

relatively quickly, faster than it is trapped by either RC or the red states.  

A ratio larger than 1.58 (corresponding to large relative intensity of difference 

spectrum f) would mean that energy from the CP43′ gets preferentially transferred to the 

red states of the PS I core and not to the RC.   

A ratio of 1.33 (i.e. between 1 and 1.58) suggests that energy absorbed by the 

CP43′ ring has on average a somewhat higher chance of ending up used for charge 

separation in the RC than the energy absorbed by the core bulk antenna states.   

Based on results presented in ref. 15 and our fluorescence data depicted in Figure 

3, we assume that only a small fraction of energy absorbed by the CP43′ is emitted from 

the CP43′; thus for the time being this small fraction will be ignored.  We denote this 
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fraction PCP43′_EM.  The integral intensities of absorption (curve b in Figure 2A) and 

normalized fluorescence excitation spectrum (curve e in Figure 2B) for the PS I core are 

compared in Frame C of Figure 2.  This comparison reveals that about 60% of the energy 

absorbed by the PS I core is emitted at ~ 720 nm; that is ~ 40 % gets utilized for charge 

separation.  We label this fraction as Pcore_RC.  A similar result was reported in [24].  

Following the same logic, the probability that energy absorbed by the CP43′ will be 

transferred to the red states of the PSI core and emitted from there PCP43′_red states is equal 

to the ratio of the (properly normalized) integrated areas of the fluorescence excitation 

and absorption spectra of CP43′.  The latter two spectra are shown as curve (f) in Figure 

2B and curve (c) in Figure 2A, respectively.  Let A1 be the integral intensity (area below 

the spectrum) of core absorption.  Then the integral intensity of the absorption spectrum 

of the PS I - CP43′ supercomplex will be AS,Abs = 1.58A1 and the integral intensity of the 

core fluorescence excitation spectrum will be AC,FluorExc = 0.6A1.  The integral intensity of 

the supercomplex fluorescence excitation spectrum will be AS,FluorExc = 1.33x0.6A1.  The 

integral intensity of the CP43′ absorption is ACP43′Abs = AS,Abs−A1=0.58A1 and the integral 

intensity of the CP43’ fluorescence excitation spectrum is ACP43′FluorExc = 

AS,FluorExc−AC,FluorExc= 0.2A1.  Consequently, the PCP43′_red state = 0.2A1 / 0.58A1 = 34%, 

compared to 60% for the probability of transfer from the core to the red antenna states.  

Thus, on average, the excitation of the CP43′ indeed results in a charge separation that is 

significantly more efficient than resulting from the excitation of PS I core.  Thus we 

suggest that the energy transfer between the CP43′ ring and the reaction center of the 

core occurs, at least at low temperatures, along a relatively well-defined pathway, 

carefully avoiding the chlorophylls responsible for the “red antenna states.”  This 
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argument is supported by Figure 1, which is adopted from [17].  Dotted arrows roughly 

indicate the possible pathways of EET that most likely avoid the B37-B38 and A32-B7 

“red aggregates” [22, 27-29].  It was demonstrated in [23, 35] that red aggregates are 

most likely located close to the trimerization domain of the PS I (solid black dot in Figure 

1).  Note that in order to avoid being transferred to the B37-B38 and A32-B7 aggregates, 

the energy would likely travel to the RC through the chlorophylls labeled A38-A40.  The 

result that the A38-A39 is not a red state is in agreement with the results of [36], where, 

based on spectral shifts upon charge separation in the RC, the absorption of those 

chlorophylls was assigned to 680-695 nm spectral region.  

We now wish to estimate the time for EET from the CP43′ to the PS I core.  The 

excitation energy redistribution is schematically shown in Figure 8.  Let E be the amount 

of excitation energy (EE) absorbed by the PS I - CP43′ supercomplex.  Of this energy, 

60% is absorbed by the PS I core and 40% by the CP43′.  Of the energy absorbed by the 

PS I core, 60% gets emitted from the red-states and 40% is utilized in charge separation.  

As a function of E, this amounts to 0.36E and 0.24E, respectively.  Of the 40% of EE 

absorbed by the CP43′, PCP43′_EM is emitted from the CP43′ and (1− PCP43′_EM) is 

transferred to the core.  As was determined above, 66% of the latter amount is utilized in 

charge separation and 34% is transferred to the red states and emitted from there.  As a 

function of EE, this amounts to 0.4 x (1− PCP43′_EM) x 0.66E and 0.4 x (1– PCP43′_EM) x 

0.34E, respectively.  The total emission from the red states of the core is then 0.36E + 0.4  

x (1− PCP43’_EM) x 0.34 E = 0.496E − 0.136 PCP43’_EME.  Based on the intensity ratio 

deduced from Figure 3, 
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Figure 8.  Scheme of the energy transfer processes between the CP43′ and the PS I core 

and within the PS I core. 
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                        (0.496E − 0.136 PCP43′_EM E) : (0.4 PCP43′_EM E) = 15:1. 

Solving this equation for PCP43′_EM, one can arrive at a probability of ~ 8% for emission 

directly from the CP43′, at 685 nm.  Taking into account this correction, we can arrive at 

values of 37% and 63 % (instead of 34% and 66 % as determined above) for the relative 

amounts of energy transferred from the CP43′ to the emitting red states of the PS I core 

and the RC, respectively; see Figure 8 for details.  Thus, the above conclusion that, on 

average, the CP43′ transfers energy to the RC much more effectively than the PS I core 

remains valid.  Since the fluorescence lifetime of the emitting state(s) of the CP43′ is not 

known precisely, the knowledge of the PCP43’_EM does not allow us to determine the 

CP43′ → PS I core energy transfer time precisely. Nevertheless, assuming a reasonably 

realistic fluorescence lifetime of 1 ns, the 8% probability of CP43′ emission requires 

energy transfer time to be (on average) close to 60 ps. 

To conclude this subsection we need to discuss the possibility that we are dealing 

with a mixture of disconnected CP43′ and PS I cores.  If this is true, the above argument 

is invalid.  Based on data shown in Figure 2A, approximately 40% of all excitation 

energy would be absorbed by CP43′-s and about 60% by the PS I cores.  Recall that the 

fluorescence yield of the PS I cores at liquid helium temperatures is about 60% for 

excitation at wavelengths shorter than 700 nm (this percentage was determined 

comparing spectra (b) and (e) in Frames 2A and 2B after normalizing them to equal 

oscillator strength of the red antenna state region (Figure 2C); see also Figure 4 in [24]).  

Thus, the 720 nm and 685 nm band integral intensity (area) ratio should be about 1:1 if 

no EET from CP43′ to PS I took place.  Since the observed ratio is at least 15:1, this 

scenario can be excluded.  (We assumed, for the sake of simplicity, that there is not much 
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non-radiative energy dissipation within the CP43 or CP43′ complexes and, consequently, 

the fluorescence yield of isolated CP43′ or CP43 should be close to 100%, consistent 

with the similarity of spectra (c) and (f) in Frames A and B respectively of Figure 2 and 

the absence of triplet bottleneck holes.)  One may also suggest that a small fraction of the 

CP43′ complexes (or CP43′ aggregates [34]) are disconnected from the PS I cores and 

only these disconnected CP43′ complexes are the origin of the 685 nm emission.  This 

suggestion, however, contradicts the observation that the temperature dependence of the 

intensity of the 685 nm emission band (not shown) is much faster than for the isolated 

CP43′ [15].  The temperature dependences observed for the PS I - CP43′ supercomplex in 

[15] and in this work are very similar despite the fact that the absorption spectra of the 

CP43′ complexes in [15] lack the narrow band in the ~ 681-683 nm region. 

Energy transfer from CP43′ to the core: Spectral hole burning.  The presence 

of a noticeable persistent satellite hole near 684 nm shown in Figure 4 is in good 

agreement with a noticeable 685 nm emission.  Absence of triplet bottleneck holes upon 

non-resonant higher-energy excitation in the case of the CP43′ within the 

supercomplexes indicates that either the lifetime or the intersystem crossing yield or 

triplet lifetime of state A are significantly reduced in CP43′ of the PS I - CP43′ 

supercomplex, compared to the isolated CP43.  Overall, there are four competing decay 

processes with different rates for the A state of the CP43′ complex within the PS I - 

CP43′ supercomplex: τET
-1, τTRIPLET

-1, τfluor
-1 and τHB

-1, which are the rate of the EET to 

the PS I core, intersystem crossing rate (not to be confused with the [triplet state 

lifetime]-1), fluorescence rate and persistent hole burning rate, respectively.  Even for the 

best hole-burning systems the  τHB
-1 < 0.1…0.01τfluor

-1 [37].  Of the four processes 
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mentioned above, only energy transfer to the core is absent in case of the isolated CP43.  

Assuming that the properties of state A in CP43 and CP43′ are otherwise similar, it is 

most likely that excitation energy transfer to the core competes with the intersystem 

crossing in the PS I - CP43′ complex.  In CP43′ the energy transfer to the PS I core takes 

place in about 60-70 ps (vide supra); such fast EET could indeed suppress the triplet 

bottleneck hole formation, if intersystem crossing rates for Chl a are in the ns-1 range 

[38].  Consequently, energy transfer from the CP43′ to the PS I core occurs, to a 

significant degree, through state A. 

Hole burning results of Figure 6 are in agreement with the 60-70 ps energy 

transfer from state A but suggest that there might be more than one energy transfer rate 

from the CP43′ to the PS I core.  Note that six CP43′ complexes are in non-equivalent 

positions in relation to the PS I core monomer (see Figure 1) and, therefore, multiple 

rates of energy transfer from the CP43′ to the PS I core should be expected.  Results 

presented in Figure 7 indicate that there is no significant contribution from the state B to 

the low-fluence fluorescence excitation mode ZPH-action spectrum, which is an 

indication of the short lifetime of the B state.  This is in agreement with the absence of 

the B-state emission in Figure 3.  The CP43′ emission band would be narrower and less 

red-shifted than that observed if a significant amount of emission from the B state were 

present.  (See the emission spectrum of CP43 from [25] superimposed on Figure 3.  

Significant fraction of CP43 emission originates from the narrower B state.)  Another 

possibility to be considered is that energy from state B of the CP43′ is transferred 

exclusively to the reaction center of the PS I and not to the red emitting states of the core.  

Taking into account the architecture of the PS I - CP43′ supercomplex and the fact that 
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some RCs are permanently closed [42], this possibility is highly unlikely.  Consequently, 

one must conclude that the (average) lifetime of state B is significantly shorter than that 

of state A.  Unfortunately, precise determination of the excited state lifetime of the state 

B by means of spectral hole burning is difficult, since one cannot access this state 

selectively.  However, the widths of spectral holes used to compose the action spectrum 

in Figure 5 can be used for rough estimation.  The widths of the shallow holes burned in 

the absorption spectrum at ~ 682 nm were in the range of 1.2 - 1.5 cm-1, which 

corresponds to the lifetime of about 10 ps.  Since the holes burned at ~ 682 nm contain 

contributions from both A and B states, and since the A-state contribution most likely has 

the resolution-limited width (0.5 cm-1), 10 ps should be considered an upper limit for the 

B-state lifetime.   

Summarizing, we are left with a relatively fast (< 10 ps) energy transfer from 

state B.  The nature of the acceptor in this energy transfer process (PS I core versus the 

state A of the CP43′) is to be determined.  In this respect, three scenarios are possible, 

each leading to certain contradictions either with some results of this work or with the 

interpretations of the results obtained in [25] for isolated plant CP43.  Before we describe 

these three scenarios, it is necessary to remind the reader that the structural origin of the 

lowest-energy band(s) of the CP43 is still unknown.  It was suggested in [25] that both 

states A and B are localized on monomeric chlorophylls.  In [39] it was argued that 

chlorophylls labeled 10, 18 and especially 12 are most likely to transfer energy to the PS 

II RC.  In [40] the lowest-energy state of CP43 was assigned to the lowest excitonic state 

of the aggregate containing chlorophylls 9, 13 and 19 in the notation of [39]. (Different 

notation was used in [40] which may be obtained by adding 14 to the notation of [39].)  
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In [21] the lowest state of CP43 was assigned to the aggregate consisting of chlorophylls 

11, 13 and 16. 

In the first scenario, which is in agreement with [25], the state B serves as a fast 

(several ps), main channel for energy transfer from the CP43′ to the PS I core.  However, 

taking into account that the energy transfer from the state A to the PS I core occurs in 60-

70 ps, it is difficult to explain the relatively high intensity of the 685 nm emission band 

for the PS I - CP43′ supercomplex (Figure 3).   

In the second scenario we invoke fast and effective energy transfer from state B 

to state A in CP43′ (with state A being the main trap and the main channel for energy 

transfer to the PS I core).  This scenario successfully explains the observations in this 

work, but contradicts the arguments from [25], where it was suggested that the B state is 

the primary low-energy trap of the isolated CP43, that energy transfer between the CP43 

and the reaction center of the PS II occurs predominantly through state B, and that the 

energy transfer between states A and B is possible but very slow (~ ns).   

According to the third scenario, states A and B both originate from the same 

chlorophyll molecule or group of molecules.  The CP43′ (isolated or in the PS I - CP43′ 

supercomplex) samples and isolated CP43 samples explored in [25, 26, 41] must have 

been highly heterogeneous, with some CP43 or CP43′ complexes having their lowest-

energy chlorophyll(s) in a very well-defined protein pocket (B-type), and the rest of the 

complexes having much worse-defined protein pocket (A-type).  Differences in spectra 

between CP43 and CP43′ from different sources could then be explained by different 

preparations of CP43 and CP43′ containing different proportions of A-type and B-type 

complexes.  Although B-type CP43′ complexes would transfer energy to the PS I core 
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faster than the A-type CP43′ complexes, due to a relatively small percentage of the B-

type complexes, the average transfer rate would not be significantly affected.  The 

transition from B-type to A-type results in a nearly two-fold increase of the permanent 

dipole moment change Δμ [25], the change of the mean phonon frequency from 24 cm-1 

to 15 cm-1 [26], and, at least in case of the CP43′, a ~ 7-10-fold decrease of the rate of 

EET to the PS I core, vide supra.  However, large variations in the properties of the same 

chlorophyll(s) as described above were never observed for any other photosynthetic 

complex.  In the case of the reaction center of PS II, the isolation process resulted in the 

shift of the P680 band from ~ 684 to ~ 680 nm in a majority of RCs [32, 43], but other 

properties of the band remained practically unchanged [32].  Moreover, the PS I - CP43′ 

supercomplexes were not subjected to the biochemical procedures employed for isolating 

CP43, and the chlorophylls serving as the energy transfer channel from the CP43′ to the 

PS I core are not as exposed to the environment as those in isolated CP43.  Therefore, the 

most apparent reasons for disruptions leading to several different types of the same 

lowest state in CP43 are absent in case of CP43′ in the intact supercomplexes, and the 

scenario involving heterogeneity of CP43 and CP43′ samples is quite unlikely.  On the 

other hand, there is not enough evidence available at the moment to completely reject 

that scenario. 

Presuming that the results obtained for CP43′ in this work must have larger 

“weight” than those obtained for a different system (isolated plant CP43), we favor the 

second scenario, involving fast B → A energy transfer.  More research, especially on the 

isolated CP43 and CP43′ is needed to clarify if the results obtained for CP43 need re-

interpretation. 
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Quality of the samples and pigment content of the CP43′ complexes.  To 

determine the pigment content of the CP43′ complexes, the areas under the PS I - CP43′ 

and the PS I spectra and their difference (assigned to CP43′) in Figure 2 were determined 

in the wavelength range from 600 to 730 nm.  These areas (which include Qy origin and 

its vibronic replicas) scale approximately as 5.2:3.3:1.9.  Assuming that there are 96 Chl 

a molecules per PS I core monomer [12] and that the PS I - CP43′ super-complex 

contains 18 CP43′ complexes, one can conclude that the number of Chl a molecules in 

CP43′ is about 10, which is closer to 13 that were found in CP43 by means of X-ray 

diffraction [19, 20] than the 17-18 molecules reported in [15].  The discrepancy between 

10 and 13 may be explained if one remembers that, due to electrostatic interactions 

between chlorophyll molecules in the adjacent CP43′ complexes as well as in the CP43′ 

and the PS I core, the spectrum of PS I - CP43′ may differ from the sum of the spectra of 

the PS I core and 18 CP43′-s even if the complexes are not disrupted.  This possibility 

was not considered when renormalizing the PS-I core absorption spectrum to the lower-

energy edge of the PS I - CP43′ absorption spectrum.  Electrostatic interactions between 

chlorophyll molecules of PS I core and CP43′ may also be a reason for the weak (less 

than 0.2 Chl a equivalent) features marked by an asterisk in spectra (c) and (f) in Figures 

2A and 2B, respectively.  However, it is also possible that our PS I - CP43′ 

supercomplexes could miss some of the 18 CP43′ subunits, and/or that the intact CP43′ 

might indeed contain only 10 Chl a molecules per complex.  The former possibility is 

more likely as it agrees with the results of [34].  In that work, 77 K absorption and 

fluorescence excitation spectra of PS I - CP43′ complexes from Synechocystis PCC 6803 
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with different CP43′ content were presented.  While the spectra of the PS I - CP43′ with 

exactly 18 CP43′ complexes per PS I trimer were somewhat less structured than the 

spectra presented in this work, the spectra of the complexes with less than 18 CP43′ per 

PS I trimer more closely resembled our 5 K spectra.  Based on the results of [34], the 

results of [15], in which the CP43′ chlorophyll content was estimated as 17-18, could be 

explained assuming that the CP43′ content was higher than 18 per PS I trimer in that 

work.  The formation of a second CP43′ ring around the first ring of the CP43′ complexes 

was observed for supercomplexes from Synechocystis grown under prolonged iron stress 

conditions [34].  In this respect it is interesting to note that the 5 K absorption spectrum 

of the CP43′ complex from Synechococcus published in [15] lacks the structure present 

in the spectrum (c) in Figure 2A and in the spectra of [34], even though the latter were 

collected at 77 K and consequently should be less structured than the 5 K spectra.  

Although we do not want to engage in speculations about the origin of the spectra 

belonging to the different bacterium, we find it worthwhile to mention that less-

structured CP43′ spectra were obtained in our laboratory after the sample was 

accidentally heated while under illumination by the FT spectrometer white light beam.  

(Moderate heating of the sample in the dark, to about 150 K, typically used to refill the 

spectral holes, vide supra, returned the shape of the absorption spectrum to that observed 

in the beginning of experiment.)  The spectra in this work can be best fitted, assuming 

that there are 13 Chl a molecules per CP43′, if there are ~ 15 CP43′ units per PS I core 

trimer.  Aggregates with 12-14 CP43′ units surrounding the PS I core monomer were 

observed in [34].  However, the spectra expected from the latter system would be quite 

different from those presented in Figure 2.  We conclude that the presence of 
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supercomplexes where the PS I core monomer is surrounded by the CP43′ units is quite 

unlikely in samples studied in this work. 

Conclusions 

We have demonstrated that low-temperature energy transfer between the CP43′ 

manifold and the PS I core is very effective in PS I - CP43′ supercomplexes from 

Synechocystis PCC6803.  Average transfer time is about 60 ps.  This finding is consistent 

with very efficient energy transfer observed for the same system at room temperature.  

The CP43′ of Synechocystis PCC 6803 possesses two low-energy states analogous to the 

quasi-degenerate states A and B of CP43 of photosystem II.  Energy transfer between the 

CP43′ and the PS I core occurs to significant degree through the broader state A.  

(Possible implications of these results for CP43, including the possibility of fast energy 

transfer between states A and B, will be the subject of future publication.)  It was also 

demonstrated that energy absorbed by the CP43′ manifold has, on average, a higher 

chance to be transferred to the RC and utilized for charge separation than energy 

absorbed by the PS I core.  Thus, at low temperatures, the energy transfer from CP43′ to 

the RC occurs along a relatively well-defined path avoiding the chlorophylls responsible 

for the “red antenna states.”  This indicates that the “red antenna states” of the PS I core 

are most likely localized on the aggregates B7-A32 and B37-B38 located close to the PS 

I trimerization domain (PsaL subunit).  We also argue that the A38-A39 aggregate does 

not contribute to the red antenna region.  No effects were observed that could be 

attributed to the B31-B32-B33 trimer (most likely absent or disrupted in Synechocystis).  

The lower limit of the chlorophyll content of CP43′ was estimated to be close to 10.  

However, we consider it more likely that the chlorophyll content of the CP43′ is closer to 
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13 (observed for CP43), but the number of CP43′ complexes per PS I trimer in our 

samples was smaller than 18 (i.e. it is most likely ~ 15).  In addition, the content of CP43′ 

monomers or CP43′ aggregates disconnected from the PS I cores in our samples was 

negligible.  It would be very interesting to perform experiments analogous to those 

described in this work on the PS I - CP43′ supercomplexes from Synechococcus 

elongatus, if and when such samples become available. 
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CHAPTER 6 – RED ANTENNA STATES OF PHOTOSYSTEM I FROM 

CYANOBACTERIA SYNECHOCYSTIS PCC 6803 AND 

THERMOSYNECHOCOCCUS ELONGATUS: SINGLE-COMPLEX 

SPECTROSCOPY AND SPECTRAL HOLE-BURNING STUDY 

 

A submitted paper that was modified and published in the J. Phys Chem. B 2007, 111, p. 

286-292. 

Kerry J. Riley, Tõnu Reinot, Ryszard Jankowiak, Petra Fromme, and Valter Zazubovich 

 

Abstract 

Hole-burning and single photosynthetic complex spectroscopy were used to study the 

excitonic structure and excitation energy transfer processes of cyanobacterial trimeric 

photosystem I (PS I) complexes from Synechocystis PCC 6803 and 

Thermosynechococcus elongatus at low temperatures.  It was shown that individual PS I 

complexes of Synechocystis PCC 6803 (which have two red antenna states, i.e. C706 and 

C714), reveal only a broad structureless fluorescence band with a maximum near 720 nm, 

indicating strong electron-phonon coupling for the lowest-energy C714 red-state.  The 

absence of zero-phonon lines (ZPLs) belonging to the C706 red- state in the emission 

spectra of individual PS I complexes from Synechocystis PCC 6803 suggests that the 

C706 and C714 red antenna states of Synechocystis PCC 6803 are connected by efficient 

energy transfer with a characteristic transfer time of ~ 5 ps.  This finding is in agreement 

with spectral hole burning data obtained for bulk samples of Synechocystis PCC 6803.  

The importance of comparing the results of ensemble (spectral hole burning) and single 
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complex measurements was demonstrated.  The presence of narrow ZPLs near 710 nm in 

addition to the broad fluorescence band at ~ 730 nm in Thermosynechococcus elongatus 

(Jelezko et al., J. Phys. Chem. B 2000, 104, 8093-8096), has been confirmed.  We also 

demonstrate that high-quality samples obtained by dissolving the crystals of PS I of 

Thermosynechococcus elongatus exhibit stronger absorption in the red antenna region 

than any samples studied so far by us and other groups.  
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Introduction 

Photosystem I (PS I) is one of the two major photosystems involved in oxygenic 

photosynthesis and is the largest, most complex membrane protein for which detailed 

structural and functional information is available [1, 2].  PS I converts light energy into 

chemical energy by transferring electrons across the thylakoid membrane from 

plastocyanine or cytochrome c6 to ferredoxin.  Structures of PS I from the 

cyanobacterium Thermosynechococcus elongatus [2] (formerly Synechococcus 

elongatus; we will use Synechococcus as a shorthand in the following discussion) and 

higher plant Pisum sativum [3] were recently determined at 2.5 and 4.4 Å resolution by 

X-ray crystallography.  A recent computational study provided an atomic model of plant 

PS I [4].  While cyanobacterial PS I is trimeric, [2] that of higher plants is monomeric 

with the core surrounded by peripheral antenna complexes [3,4].  (PS I of the deep-water, 

low illumination strains of cyanobacterium Prochlorococcus marinus [5] as well as some 

other cyanobacteria grown under iron stress conditions [6, 7] also contains peripheral 

light-harvesting complexes, the IsiA and PcB proteins that form a ring surrounding the 

trimeric PS I core.)  The similarity of the core structures of PS I from cyanobacteria and 

plants indicates that evolution caused only minor variations in the core organization and 

function, and also provides a legitimate reason to believe that the structure and function 

of PS I cores from other organisms are also similar.  Each core monomer is a complex 

network of chlorophyll a (Chl a) molecules embedded in protein with ~ 90 antenna Chls 

a surrounding the “reaction center” (containing the electron transfer chain which consists 

of primary electron donor P700, accessory Chls a, phylloquinone and 3 4Fe4S clusters) 

and funneling sunlight energy into it.  While the majority of antenna Chls a absorb at 
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670-690 nm, some absorb at even longer wavelengths than the strongly coupled reaction 

center dimer, P700 [8, 9].  It has been shown that these “red antenna states” are localized 

on multimers of Chls a (closely spaced and strongly coupled), rather than on single Chl a 

molecules that interact peculiarly with their protein environment.  Three red antenna 

states (C710, C715, C719) were resolved in PS I of Synechococcus [10] and two (C706 

and C714) in PS I of Synechocystis PCC 6803 [9, 11].   Spectral hole burning (SHB) 

experiments [9, 10, 12] showed that several properties of the lowest energy antenna states 

of Synechococcus (C719) and Synechocystis (C714) PS I are nearly identical, suggesting 

that very similar aggregates are responsible for those red antenna states, with the small 

difference in their energy most likely due to small differences in protein environment.  

Both states revealed strong electron-phonon coupling, large permanent dipole moment 

change, and large rates of pressure-induced shift of spectral holes (lines) indicating that 

electron exchange interaction contributes significantly to the excitonic coupling of the 

lowest-energy C714 and C719 ensembles.  The relations between structural and spectral 

features in cyanobacterial PS I remain undetermined.  Originally, based on the strength of 

the dipole-dipole coupling between the chlorophyll molecules, B31-B32-B33, A38-A39, 

B37-B38 and B7-A32 were identified as the most probable origins of the red antenna 

states in Thermosynechococcus elongatus [13] (Figure 1A).  The structure of PS I from 

Synechocystis was not measured; however, taking into account the similarity between the 

structures of Synechococcus [2] and plant [3] PS I, one might expect that the PS I 

structure for Synechocystis is quite similar to that for Synechococcus.  For inter-pigment 

distances smaller than 10 Å the use of dipole-dipole approximation is questionable.  

Based on the results of Full Coulomb [14] and INDO/S calculations [15], respectively,  
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Figure 1.  Chlorophyll ensembles proposed to be the origin of the red antenna states in 

PS I of Synechococcus.  (Figure 1 from ref. 14 was used as a template.)  A: From ref. 

[13].  B: From ref. [14].  C: From ref. [15].  D: From refs. [16, 17].  Note that the 

ensembles presented in A were considered in refs. [14] and [15] as well; they are not 

highlighted in B and C in order to preserve clarity.  Direction towards trimer symmetry 

axis is upward. 
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several other chlorophyll dimers were identified which could contribute to the PS I 

absorption at λ > 700 nm, namely A33-A34, A24-A35 and B22-B34 [14] (Figure 1B), or 

A33-A34, A26-A27, A10-A18, A12-A14, B09-B17 and B24-B25 [15] (Figure 1C).  Note 

that both refs. [14] and [15] still predict strong coupling between chlorophylls involved in 

the B07-A32 dimer (or B06-B07-A31-A32 tetramer) as well as for the A38-A39 and 

B37-B38 dimers, but not for the B31-B32-B33 trimer.  Balaban suggested that the syn-

ligated chlorophyll dimers B02-B03 and A03-A04 are responsible for the red antenna 

states in cyanobacterial PS I [16, 17] (Figure 1D).  Gobets et al. concluded from 

fluorescence kinetics data that the lowest-energy red antenna state is localized on the 

B31-B32-B33 trimer in the PS I of Synechococcus [18].  This assignment, however, 

contradicts the spectral hole burning results demonstrating the similarity between the 

C714 state of Synechocystis and the C719 state of Synechococcus [9, 10, 12]; (Note that 

the B31-B32-B33 trimer most probably is absent or at least rearranged/disrupted in 

Synechocystis due to the lack of the histidine residue coordinating the respective 

chlorophylls of Synechcoccus [14, 18]).  In addition, assignment of the Synechococcus 

red antenna states to the B31-B32-B33 trimer is inconsistent with data [8, 9] indicating 

that the lowest-energy red states of both Synechococcus (C719) and Synechocystis (C714) 

are localized close to the trimerization domain of PS I.   

SHB is a powerful frequency domain technique for studying the S1(Qy) excited 

state electronic structure, excitation energy transfer (EET), and electron transfer (ET) 

dynamics of protein-chlorophyll complexes at low temperatures.  Despite its frequency 

selectivity, SHB still probes inhomogeneous ensembles of complexes, meaning that 

certain properties may be subject to distribution for chlorophylls absorbing at the same 
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wavelength.  This is manifested, for example, by broadening of the spectral holes in 

external pressure and electric fields [19].  Single photosynthetic complex spectroscopy 

allows the properties of the complexes to be individually investigated, thereby removing 

effects due to inhomogeneity.  While significant progress has been achieved in the 

spectroscopic studies of single LH2 complexes [20-26] as well as LH1 [27, 28] and 

LHCII [29] complexes, there is very little single complex data available for PS I.  Until 

recently, there has been only one paper published on single PS I from 

Thermosynechococcus elongatus [30] (the data from this paper was later included in 

several reviews).  The main feature of the individual PS I spectra in [30] was a broad 

structureless band peaked at about 725-730 nm.  This band was accompanied by several 

narrow lines at 710-712 nm.  The former broad band has been assigned to the same state, 

which exhibited very strong electron-phonon coupling in SHB experiments [10].  The 

same group published another paper on single PS I earlier this year [31].  It was 

demonstrated that the emission of pre-reduced PS I is multi-component, since after 

intensive (~ 600 μW) illumination resulting in bleaching of the main fluorescence band 

peaked at ~ 730 nm, a second emission component, peaked at 745 nm became 

observable.  It was not determined, though, which absorption band correspond to the 

emission band at ~ 745 nm.  Undoubtedly, the lack of published results is due to the 

complexity of PS I.  As mentioned above, there are 288 Chls a  per PS I trimer, i.e. 

almost 300 spectral lines/bands in a relatively narrow wavelength range.  Furthermore, 

PS I does not possess the high symmetry of the light harvesting complexes from purple 

bacteria [20-28] which reduces the number of observable lines in the spectra of those 

complexes.  Jelezko et al. focused exclusively on the red antenna state region of PS I 
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from Synechococcus.  As mentioned above, their results confirmed that the lowest-energy 

state (C719) is characterized by very strong electron-phonon coupling [30].  On the other 

hand, their observation of narrow zero-phonon lines near 711-712 nm, most likely 

belonging to the higher-energy red state(s) of Synechococcus, present in both emission 

and fluorescence excitation spectra, suggested that different red antenna states (i.e. C710 

and C719) are not connected by efficient energy transfer at low temperatures.  This 

suggestion, however, contradicts the fluorescence anisotropy data [8], which indicates 

that C710→C719 energy transfer in Synechococcus does occur.  To address the nature of 

the red antenna absorption bands, energy transfer and the low-energy emitting states, we 

describe below SHB results obtained for bulk PS I samples and the single complex 

emission spectra of PS I from both Thermosynechococcus elongatus and Synechocystis 

PCC 6803 obtained under identical experimental conditions.  We will also demonstrate 

the importance of comparing the results of conventional absorption and emission 

spectroscopy (ensemble, low resolution), spectral hole burning (ensemble, high 

resolution), and single complex spectroscopy, which has rarely been done in the same 

manuscript. 

Experimental 

Wild-type trimeric PS I complexes from Synechocystis PCC 6803 were extracted 

as described in ref. [9].  The concentrated samples (stored at –700 C) were from the same 

batch as those used in our earlier hole burning experiments [9, 12].  Wild-type trimeric 

PS I complexes from Thermosynechococcus elongatus were prepared by dissolving high 

quality crystals similar to those used in X-ray diffraction experiments [2] in buffer 

containing 5 mM Mes, pH 6.4, 50 mM MgSO4, 0.02 % dodecylmaltoside.   
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For bulk experiments, the above solution was mixed with buffer (10 mM MOPS, 

0.02% β-dodecylmaltoside, pH = 7) and then mixed with glycerol (1:2) so that the final 

Chl a concentration was ~ 2.10-5 M.  The buffer-glycerol matrix provides good quality 

glass upon cooling to liquid helium temperatures.  Absorption spectra and hole-burning 

spectra were measured with a Bruker IFS 120HR Fourier-transform spectrometer at 2  

cm-1 resolution.  Spectral holes were burned with a Coherent CR-699 laser with Exciton 

LD-688 dye (650-720 nm).  Bulk emission spectra were measured with ~ 1 nm resolution 

using a McPherson 2061 1-m focal length monochromator with a Princeton Instruments 

diode array as a detector.  These spectra were obtained with an excitation wavelength of 

308 and/or 514 nm. 

For experiments involving single complexes, concentrated PS I samples were first 

diluted with a suitable buffer (vide supra) to achieve the OD680  ≈ 0.4 per 1 cm thickness, 

which corresponds to a Chl a concentration of approximately 10-5 M, i.e. to a 

concentration of trimeric PS I complexes of less than 10-7 M, taking into account 96 Chl 

a per P700.  This solution was diluted again in a buffer/glycerol mixture (3:1) by a factor 

of ~ 1000, and then spin-coated on a plasma-cleaned sapphire plate yielding a film 

thickness of less than 1 μm.  The use of glycerol here was not meant to facilitate 

formation of a transparent glass, but to adjust the viscosity of the solution for better thin 

film formation.  Polymers were not used for sample preparation because, based on our 

experience (unpublished results), the photosynthetic complexes embedded in dry polymer 

films are disrupted compared to those studied in typical bulk experiments.  The sample 

was placed in a cold (< 0º C), dark, oxygen-free cryostat and temperature was lowered to 

liquid helium temperature in about 20 minutes.  Experiments were performed at 10 K in 
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helium gas or at 2 K in superfluid helium.  To avoid sample degradation, all room-

temperature sample-handling procedures were performed in dim light as quickly as 

possible. 

The optical setup was based on a home-built confocal microscope with a Newport 

60x 0.85 NA achromatic objective attached to the sample holder inside the cryostat 

(Janis).  In order to reduce sample movements due to temperature expansion, the rod of 

the sample holder was made from fused quartz.  The sample was moved in relation to the 

objective along the objective axis using an electromagnet with two parallel coils, one 

superconducting (for T < 7 K) and the other made from copper wire. A computer-

controlled scanning mirror was used to move the focal spot across the sample plane.  

Excitation was performed with a Coherent CR-699 laser with Exciton LD-688 dye (650-

720 nm), and with intra-cavity etalons removed, providing a linewidth of several GHz.  

After adjustment to ensure that the PS I-containing film was indeed in the focal plane of 

the objective, the scanning mirror was moved while the fluorescence (excited at 675-680 

nm) was collected (at λ > 700 nm) by the avalanche photodiode (Perkin-Elmer, dark 

count < 25 s-1).  The experimental setup is schematically depicted in Figure 2A.  An 

example of the resulting 10 K “raster-scan” image is presented in Figure 2B.  The 

fluorescence peaks (red) correspond to individual PS I complexes from Synechocystis 

PCC 6803.  In order to focus on individual complexes, the mirror was then moved to 

positions determined from the raster-scan image and spectroscopic measurements were 

performed.  Emission spectra were collected with either a Princeton Instruments PI-MAX 

intensified CCD camera or a liquid nitrogen-cooled, back–illuminated CCD camera 

through Omega AELP 700 long-pass filter (and DRLP 710 dichroic mirror) and a Jobin-
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Figure 2.  Frame A: Scheme of the confocal microscope used for individual complex 

spectroscopy.  EP is excitation pinhole, DM is dichroic mirror, MM is motorized mirror, 

MO is microscope objective, LP is long-pass filter, and FM is flipping mirror.  APD itself 

and the monochromator’s slit were used as detection pinholes.  Frame B: Raster-scan 

image of the thin film containing single PS I complexes from Synechocystis PCC 6803 

(red peaks) obtained by varying the orientation of the scanning mirror.  Fluorescence was 

collected with a 180 μm-diameter avalanche photodiode used as a pinhole.  Complexes 

were excited with 250 nW / μm2 (25W/cm2) at 680 nm and fluorescence was collected at 

λ > 700 nm.  T = 10 K. 



www.manaraa.com

220 

Yvon Triax 320 spectrometer with a resolution of 0.4 nm.  Excitation was at 675-680 nm.  

Excitation intensities (adjusted using neutral filters, LOMO) are given in the figure 

captions.  In calculating these intensities, it was assumed that the laser was focused at a 1 

μm2 spot.  In order to reduce background (mainly broadband dye fluorescence) an Omega 

3rd Millennium SP700 short-pass filter was placed after the laser power stabilizer 

(BEOC).  

Results and Discussion 

Synechocystis PCC 6803.  The bulk 5 K emission spectrum of trimeric PS I from 

Synechocystis PCC 6803 showed a single fluorescence origin band with a maximum near 

720 nm (see below), in agreement with emission spectra reported in [9, 33].  The shapes 

of the absorption spectrum, and of the satellite hole structure resulting from downhill 

excitation energy transfer following high-energy excitation, were also in agreement with 

earlier results [9, 12].  Therefore, it is assumed in the following discussion that the 

spectra described reflect the properties of the intact trimeric Synechocystis PS I 

complexes.   

The noisy spectrum in Figure 3A is a typical low-temperature emission spectrum 

of a single PS I complex from Synechocystis PCC 6803.  The spectrum peaks at 720 nm 

and is quite broad (FWHM = 12 nm) and structureless.  This result is in agreement with 

the spectral hole burning data [9, 37] and supports the assignment of [9] where it was 

demonstrated that electron-phonon coupling for the emitting (C714) state is very strong, 

with a total Huang-Rhys factor S of about 2.  The strong electron-phonon coupling, along 

with possible light-induced spectral diffusion, is the reason why ZPLs belonging to the 

C714 state were not observed.  Similar strong electron-phonon coupling for the lowest- 
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Figure 3.  Frame A: Typical emission spectrum of a single PS I complex from 

Synechocystis PCC 6803 excited at 675 nm.  Approximately 1.5 μW was focused on the 

single complex (i.e. the excitation intensity was ~150 W / cm2 assuming 1 μm2 focal 

area) and the collection time was 300 seconds.  T = 10K.  Bulk emission spectrum (thick 

solid curve; excitation at 308 nm) is superimposed on the single complex emission 

spectrum.  Frame B: Histogram of the emission band maximum wavelengths based on the 

data from 27 single PS I complexes.  Excitation was at 675 nm. 
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energy red antenna state of single PS I complexes from Synechococcus (C719) was 

demonstrated in ref. [30].  No sharp zero-phonon lines were observed near 706-708 nm, 

where direct emission from the C706 state might be expected.  At this point, it may be 

asked if this finding actually suggests that there is only one red antenna state in 

Synechocystis PCC 6803, as proposed in ref. [18].  However, as demonstrated in refs. [9] 

and [34], electron-phonon coupling changes across the red antenna absorption band, 

becoming significantly weaker at 706-710 nm (S ≤ 1.2) than at 714-718 nm (S ≈ 2).  

Furthermore, significant differences were also observed for the permanent dipole moment 

change between excited and ground state Δμ [9], again supporting the presence of more 

than one red antenna state.  We are unaware of a theoretical model that could explain the 

variation of S and Δμ by a factor of two within a single inhomogeneously broadened 

band.  However, let us assume for a moment that just one red antenna state with such 

correlation is present in PS I and consider its possible manifestations on a single complex 

level.  The emission from the PS I complexes with the one and only lowest state 

absorption at longer wavelengths (for example at ~ 715 nm) is expected at ~ 720 nm and 

should be broad and structureless due to strong electron-phonon coupling, S ≈ 2 (as 

observed).  The emission from PS I complexes with the lowest state absorbing at shorter 

wavelength (for example at ~ 708 nm) is expected to contain a well-defined ZPL at about 

the same wavelength (due to weaker electron-phonon coupling, S ≤ 1.2).  The single 

complex spectroscopy results in Figure 3B definitely do not fit this line of reasoning.  

Figure 3B contains the diagram of the emission band maxima of 27 single complexes.  

All measured single complex emission spectra contained only a broad band peaked at 

716-722 nm; none exhibited narrow zero-phonon lines at ~ 708 nm.  Also, the bulk 
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emission spectra in this work and in refs. [9] and [33] did not exhibit any shoulders at 

706-710 nm.  (For easy comparison, the bulk emission spectrum of Synechocystis PS I is 

superimposed on the single complex spectrum in Figure 3A.)  This is a good illustration 

of the importance of comparing the results of single complex spectroscopy with those of 

ensemble techniques, such as SHB whenever possible.  The results of single complex 

spectroscopy alone do not prove that there are two red antenna states in PS I of 

Synechocystis PCC 6803.  Likewise the SHB results alone do not allow distinguishing 

between the cases of two red antenna states and of one state with a correlation between 

the wavelength and the electron-phonon coupling.  Only when the two techniques are 

combined do the results prove the presence of the two states.   

The absence of narrow lines in the spectra of single PS I from Synechocystis PCC 

6803 may indicate that the red antenna states in Synechocystis are connected by fast and 

efficient energy transfer, in agreement with spectral hole burning results [12] which yield 

5-6 ps for the C706 state lifetime.  (Obviously, a 5-6 ps energy transfer time corresponds 

to a quite narrow, ~ 1 cm-1, ZPL.  Since the fluorescence lifetime of the C706 state is in 

the nanosecond range, the fluorescence yield must be smaller than 0.005, which makes 

ZPL unobservable in single complex experiments at 0.4 nm resolution, especially if 

spectral diffusion is present.)  However, to prove that we were capable to observe narrow 

ZPLs using our experimental setup, single PS I complexes from Thermosynechococcus 

elongatus were also studied and results were compared to those described in refs. [30] 

and [31].  

Thermosynechococcus elongatus.  Unlike in previous spectroscopic studies, here 

the Thermosynechococcus elongatus PS I samples were prepared by dissolving high-
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quality PS I crystals.  Absorption and hole-burning spectra of trimeric PS I from 

Synechococcus are presented in Figure 4 along with the absorption spectrum obtained 

earlier for conventionally prepared sample under similar conditions [10].  The absorption 

spectra are normalized for equal bulk antenna absorption at ~ 680 nm.  The absorption 

spectrum (thick solid curve in Frame A) is similar to that reported in [8, 10, 32], except 

for the red-antenna state region (~ 700 - 740 nm), which appears to have significantly 

greater oscillator strength.   In addition, a comparison of the shapes of the absorption 

spectra in the 700 -740 nm region suggests that the relative intensity of the band peaking 

at 710 nm is approximately the same for both samples while the intensities of the lower-

energy (C715 and C719) bands are greater for the sample studied in this work.  To test 

this suggestion, we explored the shape of the hole spectra (and its time evolution during 

the hole-burning process) resulting from non-resonant excitation at 670 nm (Figure 4B).  

Formation of satellite holes at lower energies is due to downhill energy transfer followed 

by spectral hole burning.  At low burn fluences (≤ 10 J / cm2) the only low-energy 

satellite hole observed is peaked at 719 nm (dotted curve in Frame B of Figure 4).  In our 

experiment, the hole at 719 nm was observable directly, in contrast to the spectra 

presented in ref. [10], where the C719 state was only detectable in the difference (curve c 

in the insert in Figure 4B) of satellite hole spectra obtained with different burn fluences 

(curves a and b in the insert in Figure 4B).  With the increase of the burning dose, the 719 

nm hole became obscured by the much stronger hole peaked at 715 nm.  Thick solid and 

dashed curves in Frame B of Figure 4 are hole spectra resulting from irradiation with 500 

J /cm2 at 670 nm for samples studied in this work and in ref. [10], respectively.  In the 

earlier work the third satellite hole, at 710 nm, was as strong as the 715 nm hole [10].   
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 Figure 4.  5 K bulk spectra of PS I of Thermosynechococcus elongatus.  Frame A: Bulk 

absorption spectra.  Thick solid curve: trimeric PS I sample used in this work.  Thick 

dashed curve: trimeric PS I sample used in [10].  Spectra are normalized to 

approximately equal absorbance in the bulk antenna region, ~ 680 nm.  Frame B: Satellite 

hole spectra resulting from illumination at 670 nm of the trimeric PS I sample used in this 

work with about 10 J / cm2 (25 mW/cm2 for 420 sec; dotted curve) and about 500 J / cm2 

(several burns with intensity of up to 300 mW/cm2; solid curve).  Thick dashed curve: 

hole spectrum resulting from illumination at 670 nm with about 500 J / cm2 for the 

sample explored in [10].  Insert: the evolution of the hole spectrum shape for the sample 

described in [10].  Solid curve a corresponds to a burning fluence of about 3 J / cm2 and 

long-dashed curve b – to about 100 J / cm2.  Curve a was multiplied by a factor of ~ 2 to 

normalize it to curve b at 700 nm (14285 cm-1).  Short-dashed curve (c) is the difference 

of curves a and b. 
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But in this work (solid curve in Figure 4B), the 710 nm hole is just a shoulder compared 

to the 715 nm hole.  Thus, we conclude that C715 and C719 bands in our samples have 

higher oscillator strength than in other Thermosynechococcus elongatus PS I samples 

explored thus far.  Note that the integral intensity and shape of the red antenna region are 

sensitive to the monomeric / trimeric state of PS I.  Such a tendency was observed for 

both Synechococcus [8] and Synechocystis [9].  Therefore, one might conclude that the 

supposedly trimeric Synechococcus samples in the previous studies by us and other 

groups could, in fact, contain a certain fraction of monomeric PS I.  The emission 

spectrum (Figure 5, solid curve) is peaked at 732 nm, at approximately the same 

wavelength as in the previously described samples (dashed curve in Figure 5; from ref. 

[10]).  This emission band is assigned to the same chlorophylls which have their 

absorption maximum at 719 nm (C719), in agreement with the data on electron-phonon 

coupling [10].  In this work, no weak shoulders near 710 nm (indicated by the solid 

arrow) were observed.  Also, the band at ~ 685-690 nm (indicated by the dashed arrow) 

was significantly weaker than in the earlier works.  No contribution from disconnected 

chlorophylls, which might be expected at ~ 670 nm, could be detected.  Resonant hole-

burning experiments (results not shown) confirmed that the electron-phonon coupling is 

very strong (S ≥ 2) for the C719 state and relatively weak (S ~ 1) for the C710 state, in 

agreement with earlier work [10].  Thus, we concluded that the Synechococcus samples 

appear to be the most intact trimeric PS I samples studied thus far. 

The emission spectra of individual PS I complexes from Thermosynechococcus 

elongatus are shown in Figure 6.  The main feature of the individual PS I spectra is a 

broad band peaked at about 725-727 nm, in good agreement with [30].  This band closely  



www.manaraa.com

228 

 

 

 
Figure 5.  5 K emission spectra (excited at 308 nm) of the Synechococcus PS I samples 

used in this work (solid curve) and in [10] (dashed curve).  Spectra are normalized to 

equal intensity at 730-732 nm.  Solid arrow indicates the shoulder at 710 nm in the 

spectrum from ref. [10].  Dashed arrow indicates a feature at ~ 690 nm. 



www.manaraa.com

229 

 



www.manaraa.com

230 

 
 

 

 

 

 

 

 
 
 

Figure 6.  Single complex emission spectra of PS I of Thermosynechococcus elongatus. 

About 5 μW at 680 nm were focused to a spot of about 1 μm2 (i.e. the excitation intensity 

was 500W/cm2) and collection times were 300 seconds (Frame A) and 60 seconds 

(Frames B and C).  Frames A-C contain spectra of three different complexes.  

Consecutively taken spectra of the same complex are depicted in each frame.  T = 9 K.  

Spectra are shifted along the vertical axis for clarity. 
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resembles the bulk emission spectrum and most likely originates from the C719 state, 

characterized by strong electron-phonon coupling [10].  This broad band was sometimes 

accompanied by narrow lines at 706-713 nm.  Assuming weak to moderate electron-

phonon coupling observed with SHB at ~ 710 nm [10], the absorption maximum of the 

state from which the narrow ZPLs originate should be 709-710 nm in the bulk spectra, 

i.e. the lines most likely belong to the C710 state.  Narrow zero-phonon lines (ZPL) in the 

706-713 nm region were at least occasionally observed in 80% of the single complexes.  

The relative intensities of these narrow ZPL and of the main emission band at ~ 725-727 

nm varied from one complex to another.  The number of lines also varied from one 

complex to another and from spectrum to spectrum for the same complex, so that no lines 

were observed in about 50% of the spectra   Frames A-C of Figure 6 show consecutively 

collected emission spectra of three different complexes.  (Periodic features at λ > 730 nm 

most probably originate from the etaloning effect of the back-illuminated CCD, i.e. the 

interference between reflections from the front and back surfaces of a thinned back-

illuminated CCD chip.)  It is evident that the positions of the sharp lines varied with time, 

and sometimes the lines disappeared entirely only to reappear later (on the time scale of 

tens of seconds).  This is an indication of relatively slow spectral diffusion.  For fixed 

laser excitation intensity, we did not notice any significant statistical difference between 

either the probability of observing narrow lines or their spectral diffusion behavior at 10 

K and at 2 K.  (Unfortunately, we were unable to follow the same single complex from 

10 K to 2 K.)  Thus, we conclude that the observed spectral diffusion is predominantly 

light- and not thermally induced.  In other words, we observed a process analogous to 
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non-resonant spectral hole burning in the bulk experiments (frame B of Figure 4).  The 

relative insignificance of thermally induced spectral diffusion is consistent with the slow 

filling of spectral holes below 20 K in the dark. 

Single complex emission spectra obtained for PS I in this work as well as in work 

previously published by Jelezko et al. [30] indicate that the emission from the C719 state 

(peaked at 730 nm) is significantly more intense than the emission from the C710 state, 

although the bulk absorption of the two states is comparable.  No significant shoulder 

near 710 nm was observed in the bulk emission spectra (Figure 5, solid curve).  These 

data suggest that emission from the C710 state upon high-energy (indirect) excitation is 

relatively weak (if present at all).  On the other hand, upon direct excitation, sharp lines 

belonging to the C710 state were detected by Jelezko et al. in fluorescence excitation 

spectra even though their experimental setup, including a filter transmitting at λ > 725 

nm, did not favor the detection of the ~ 710-712 nm emission [30].  The most probable 

explanation for these observations involves relatively efficient energy transfer from the 

C710 state to the C719 state.  It is noteworthy that we never observed more than two lines 

in a single spectrum (perhaps the result of a spectral diffusion event occurring during the 

collection time), while Jelezko et al. [30] reported up to four lines in a single spectrum for 

the same collection time, 60 sec.  It was recently demonstrated that the red state emission 

is polarized [31], and the differences in the number of observed lines from complex to 

complex in the same experiment could be explained by orientation effects.  However, 

both in this work and in [30] the samples were produced in a similar manner, and it is 

unclear why the average orientation of the complexes should be different in this work and 

in ref. [30].  The possibility of rapid spectral diffusion (which could average away the 
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narrow lines at long collection times) was investigated by reducing the spectrum 

collection time from 60 sec to 10, 5 and 1 sec, respectively, for some of the complexes 

that did not reveal any narrow lines.  Since no narrow lines were observed even for the 

shortest collection times, we believe that narrow lines were truly absent in the emission 

spectra of some Synechococcus PS I complexes.  It is tempting to suggest that the 

differences between our observations and those by Jelezko et al. are due to higher 

intactness of the samples used in this work, which results in a higher probability of C710 

→ C719 energy transfer.   

The energy transfer processes occurring in PS I of Synechococcus are 

summarized in Figure 7.  The energy absorbed by the bulk antenna (650-700 nm) is 

transferred to the reaction center (P700) or to the red antenna states C710, C715 and 

C719.  The differences from complex to complex in the relative intensities of the 

fluorescence originating from the C710 and C719 states may be due to orientation effects 

or to varying probability of EET from the higher-energy core states to the C710 state or 

to varying probability of C710 → C719 energy transfer.  Unfortunately, polarization 

measurements employing conventional setups such as those used in this work and in [30, 

31] do not allow one to determine whether or not the effects related to variations in the 

EET probabilities are present in addition to the orientation effects.  One can suggest, 

however, that the very fact that narrow C710 lines were observed for Synechococcus PS I 

indicates that the C710 → C719 energy transfer times are, at least in some PS I 

complexes, significantly longer than 5-6 ps observed for the C706 state of Synechocystis  

by means of spectral hole burning [12].  
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Figure 7.  Diagram of energy transfer processes in PS I of Thermosynechococcus 

elongatus. 
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We hasten to remind the reader that while the C714 band of Synechocystis PCC 

6803 and the C719 band of Thermosynechococcus elongatus very likely belong to the 

same chlorophyll multimer [10, 12], the C706 band of Synechocystis and the C710 band 

of Synechococcus most probably do not.  It is quite possible that the C706 band of 

Synechocystis corresponds to the C715 band of Synechococcus since both are sensitive to 

the trimeric / monomeric state of the PS I complexes [8, 9], and since no features 

attributable to the C715 state were observed in the single PS I spectra of Synechococcus 

as well as for the C706 state in Synechocyctis.  The latter observation suggests that the 

C715 → C719 energy transfer in Synechococcus occurs on a timescale of ≤ 5 ps (as for 

C706 → C714 energy transfer in Synechocyctis), in agreement with assignment of the 

C715 and C719 (or C706 and C714) states to two chlorophyll multimers located close to 

each other in the trimerization domain, i.e. B37-B38 and B7-A32.  (In SHB experiments 

[12] zero-phonon holes could be observed even if energy transfer is very fast, because the 

spectra are accumulated.)  However, it cannot be excluded that fast spectral diffusion, in 

addition to fast energy transfer, contributes to our inability to observe narrow lines 

originating from the C706 state of Synechocystis and the C715 state of 

Thermosynechococcus elongatus.   

Conclusions 

It has been demonstrated that combining spectral hole burning and single 

complex spectroscopies (using the same PS I preparations) provides unique insights into 

the excitonic structure and excitation energy transfer processes in these complex 

biological systems.  Application of both bulk and single-entity techniques is especially 

informative when the spectroscopic properties of the systems under study are dependent 
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on sample preparation.  We have used highly purified PS I crystals from 

Thermosynechococcus elongatus similar to those used in X-ray diffraction experiments; 

dissolved crystals yielded samples whose absorption spectra revealed significantly 

stronger “red” antenna bands.  These samples have also provided more convincing data 

that PS I from Thermosynechococcus elongatus indeed possesses three “red” antenna 

states, i.e. C710, C715, C719, in agreement with our earlier assignment [10].  In addition, 

the presence of the narrow ZPLs in the vicinity of 710 nm in the emission spectra of 

single PS I complexes from Thermosynechococcus elongatus has been confirmed.  Their 

weakness suggests that the energy transfer from the C710 to the C719 state is relatively 

efficient.  The absence of narrow lines near 706-708 nm in the emission spectra of single 

PS I complexes from Synechocystis PCC 6803 indicates that energy transfer from the 

C706 state to the C714 state is fast (~ 5 ps) and efficient.  Finally, our results provide 

additional proof of the similarity of the lowest-energy states of PS I from Synechococcus 

and Synechocystis (C719 and C714, respectively) as well as of the presence of two 

different red antenna bands (C706 and C714) in PS I of Synechocystis PCC 6803.  
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CHAPTER 7 – PHOTOSYNTHETIC COMPLEXES: A MODEL FOR THE 

DESIGN AND CONSTRUCTION OF MOLECULAR ELECTRONICS 

 

Currently there is a wealth of information concerning the energy and electron 

transfer properties in photosynthetic complexes.  The physical properties of light 

harvesting and RC complexes that constitute the PSUs of anoxygenic and oxygenic 

organisms have been extensively studied with high-resolution time domain (e.g. ultrafast) 

[1-3] and frequency domain (e.g. hole-burning, photon-echo, single-molecule) 

spectroscopies [4-6].  This along with X-ray structural information [7-10] provides a 

well-established paradigm for describing these biological electron transfer processes.  

Thus, this extensive knowledge database offers an excellent model for the further 

development of “third generation” photovoltaics [11], solar cell devices with efficiencies 

that are higher than current solar technology limits (~ 25-30 %), and that even approach 

Carnot efficiency limits (~ 85-90 %).  However, the development of these third-

generation devices will require much more sophisticated cell architectures than current 

thin-film semiconductor technologies employ.  These devices will most likely have to 

incorporate tandem and multi-band cell designs [11] that can be selective for different 

photon wavelengths, and thus different energy band gaps, to provide the highest 

efficiency for utilizing solar light. 

PSUs, which have internal quantum EET and electron transfer (ET) efficiencies 

ranging from 70-99%, along with spectral selectivities across nearly the entire visible 

wavelength range (~ 400-800 nm) [12-13], function as an ideal model for these more 

advanced photovoltaic technologies.  Studying the architecture and functioning of PSUs 
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can address features such as optimal engineering efficiency for light absorption and solar 

energy conversion, energetic tolerance against onset of failure, and construction and 

assembly of solar cells on nanoscale dimensions [14].  One unique feature in 

photosynthetic systems is the functional specialization for different Chl pigments, i.e. 

some Chl molecules function as light harvesting antenna Chls for primary EET while RC 

Chls are responsible for electron transfer and charge separation.  Light absorption and 

solar energy conversion in PSUs is maximized through the optimization of the photon 

absorption rate and Chl-Chl distances for EET and ET.  Light harvesting is optimal with a 

PSU size ranging from 30-330 Chl molecules (considering that the absorption cross-

section for a Chl molecule is ~ 0.302 A) to yield typical biological catalysis rates of 102-

104 s -1 [13, 14].  Maximal excitation energy and electron transfer is achieved when Chl-

Chl distances are ≤ 10-20 nm and ≥ 1.4 nm, respectively [14].  It has also been found that 

the distributions of Chl-Chl distances in PSUs do not need to be uniform for a high EET 

probability.  For example, Chl-Chl distances that range from a minimum of 1 nm and a 

maximum of 4-8 nm still result in energy transfer quantum efficiencies of more than 98% 

according to Förster energy transfer theory [14].  In fact, most Chl-Chl distances are ~ 4 

nm.  However, the lower bound for the PSU Chl-Chl distances is much less variable.  

This is because Chl-Chl distances shorter than this can result in the formation of excitonic 

dimers (see Chapter 2.4.2), which can quench excited states [14-17].  Lastly, Chl-Chl 

dipoles are oriented non-randomly in the antenna system so that EET is favored over non-

radiative decay channels [18, 19]. 

PSUs are also engineered to efficiently dissipate excess light energy and to 

prevent the formation of damaging cation or anion radicals.  Other pigment molecules, 
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such as carotenoids, act as photoprotective excitation quenchers due to their fast non-

radiative decay rates [14, 20].  These pigment molecules complement the absorption 

spectrum of the Chl antenna molecules, thereby increasing the absorption cross-section of 

the PSU.  Cation and anion radicals can also be formed during electron transfer steps, 

which can oxidize or reduce the Chl pigment molecules and thereby damage the PSU 

[21].  RC pigments avoid this through multiple electron steps along energetically similar 

pigments that do not have large separation distances  (< 6 nm) so that electron transfer 

and charge recombination is fast enough to avoid the formation of these radicals [14, 22].  

However, ET between LH and RC pigments can generate long-lived radicals that can 

damage the antenna complexes.  Photosynthetic systems counteract this by having light 

harvesting pigment molecules that are energetically higher than the primary electron 

donor radical, and through LH-RC pigments distances (~ 2-3 nm) that minimize 

oxidation or reduction reactions but that still allow for almost unity EET probability [14].  

Thus, it is evident that the molecular architecture of PSUs offers important engineering 

and design blueprints for developing highly efficient nanoscale molecular photovoltaic 

electronics. 

Currently, research efforts have progressed to synthesizing biomemetic systems 

that attempt to simulate the design of PSUs for use as molecular electronics.  For 

example, Moore et al. [23] have recently developed an artificial RC complex where a 

purpurin macrocycle is linked to a C60 fullerene and to a carotenoid polyene.  In this 

moiety, the purpurin is the primary electron donor, with the carotenoid functioning as an 

antenna and secondary electron donor, while the fullerene acts as the primary electron 

acceptor.  After excitation a charge separated state forms in ~ 10 ps time scale with a 
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quantum efficiency of ~ 32%.  Developments such as this, where the architecture of the 

PSU is used as a design blueprint, may have important implications for the development 

of future nanoscale molecular electronics.  There has also been research progress made in 

directly coupling biological photosynthetic systems (e.g. RCs) to solid-state materials to 

fabricate biomolecular electronic and photovoltaic devices.  One of the first successful 

attempts in this area was obtained by Greenbaum et al., [24] in which they fabricated a 

biophotovoltaic device by orienting monomeric photosystem I (PS I) RC complexes from 

green plants on 2-mercaptoethanol functionalized gold surfaces.  Additional work by 

Greenbaum et al. [25] has involved the immobilization of monomeric PS I RC complexes 

in solid-state sol-gel glasses, in which the biological functioning of the complexes were 

retained in order to catalyze H2 generation.  Baldo et al. [26] have demonstrated the 

integration of electrically active purple bacterial and monomeric PS I RC complexes in 

solid-state devices, realizing photodetectors and photovoltaic cells with short circuit 

densities of ~ 0.10 mA/cm2.  The electronic integration of the devices was accomplished 

by self-assembling an oriented monolayer of mutated bacterial reaction centers from Rb. 

Sphaeroides.  The complexes were stabilized with surfactant peptides [27-30] and then 

coated with a protective organic semiconductor.  Most recently, Carmeli et al. have 

reported the ordering of monomeric and trimeric PS I mutant complexes on atomically 

flat gold surfaces through covalent cysteine bonding [31].  Through Kelvin probe force 

microscopy, photovoltage measurements were obtained which indicated that these 

oriented RCs were functional and able to generate a light-induced electric potential of ~ 

0.5 V.  In addition, we have recently finished experiments where trimeric PS I complexes 

are oriented on 2-mercaptoethanol functionalized gold surfaces, to form functional 
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photovoltaic devices that can be measured through wet cell photoelectric measurements 

(see Chapter 8).   

It is apparent, then, that the next phase of photosynthesis research is going beyond 

studying the physics the energy and electron transfer properties of PSUs and their 

corresponding photosynthetic complexes, to actually using the information gained from 

these studies to either design next generation molecular electronic and photovoltaic 

devices or to use these photosynthetic complexes as a basis for biomolecular electronics.  

This is especially promising as further developments in biochemistry and site-directed 

mutagenesis may allow the fabrication of tailored PCs that can be coupled to solid-state 

materials to form advanced architectures, such as tandem and multi-band photovoltaic 

cells, for the development of third generation photovoltaics.  Considering the limited 

resources of non-renewable energy sources, the considerable impact that this avenue of 

research could have would be well worth the investment.  
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CHAPTER 8 – TRIMERIC PS I COMPLEXES: A ROBUST BASIS FOR 

NANOSCALE CIRCUIT ARCHITECTURE IN MOLECULAR ELECTRONIC 

DEVICES 

 

Preliminary data - to be submitted for publication. 

Kerry J. Riley, Valter Zazubovich, Yuri Markushin, and Ryszard Jankowiak 

 

Introduction 

Renewable solar energy technology goals currently include the development of 

“third generation” photovoltaics; high efficiency, thin film cells having energy 

conversion values double or triple the current limits of 25-30% [1].  Photosynthetic 

pigment reaction center (RC) complexes utilize solar energy for electron transfer which 

results in a charge separated state across the complex.  This energy conversion process 

has a quantum efficiency approaching that of unity with redox potentials ranging from 

0.4 – 1.2 V [2], making RC complexes ideal for use as individual nanoscale (~ 100 nm 

size range) solar cells in third generation technology.  For example, a 1 cm2 chip of 

oriented photosynthetic complexes could have a minimum theoretical power output of ≥ 

10 W [5].  It can be argued then, that the most powerful application of current 

photosynthesis research would be to develop solar cell technology that either mimics 

these biological photosynthetic systems or actually uses these highly evolved and 

efficient organisms as circuit architecture for energy transduction.   

During the last few years, research groups have made significant advances 

developing this promising area of research.  Greenbaum et al. have reported a 
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biophotovoltaic device in which photosynthetic RC complexes were used to generate a 

photovoltage [3,4].  Specifically, they showed that monomeric photosystem I (PS I) RC 

complexes from green plants could be selectively oriented by chemical modification of 

the substrate surface [4].  Additional work by Greenbaum et al. involved the 

immobilization of monomeric PS I RC complexes in solid-state sol-gel glasses, in which 

the biological functioning of the complexes was retained [5].  Also, Baldo et al. [6] 

demonstrated the integration of electrically active purple bacterial and monomeric PS I 

RC complexes in solid-state devices, realizing photodetectors and photovoltaic cells with 

short circuit densities of ~ 0.10 mA/cm2 and reported internal quantum efficiencies (QE) 

of ~ 12% (however, recent discussions with the authors indicate that there was as error in 

this estimation by two orders of magnitude).  The electronic integration of these devices 

was accomplished by self-assembling an oriented monolayer of mutated bacterial 

reaction centers from Rb. Sphaeroides.  The complexes were stabilized with surfactant 

peptides [7-9, 11] and then coated with a protective organic semiconductor.  Most 

recently, Carmeli et al. have reported the ordering of monomeric and trimeric PS I mutant 

complexes on atomically flat gold surfaces through covalent cysteine bonding [12].  The 

construction of these functionalized substrates using photosynthetic complexes has also 

attracted a growing interest for their possible applications in various chemo - and 

biosensor devices, along with their important implications to renewable solar energy 

technology [14-17]. 

 Along with the work presented in refs [3-6], recent findings in this area clearly 

suggest that the most important step in the nanofabrication of biomolecular devices is the 

controlled functional orientation of proteins on a two-dimensional surface [10-15].  
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Photosynthetic protein complexes (PC) function in lipid bilayer membranes, and, 

consequently, these protein structures have developed a delicate balance of hydrophilic 

and hydrophobic interactions, such that their native conformation and functional integrity 

will not be retained outside this environment [18, 19].  Thus, the coupling of 

photosynthetic complexes to inorganic substrates, which necessitates a stabilizing 

interface, is indeed a challenging task.  Ideally, a large, rugged photosynthetic RC 

complex where the RC cofactors are well shielded by the surrounding protein matrix, and 

has a large number of redundant antenna pigments, should be used for fabrication of 

photosynthetic RC-biomolecular devices.  The trimeric cyanobacterial photosystem I (PS 

I) with 270 antenna chlorophylls (Chls) and 3 RCs possesses all these attributes and is 

therefore ideal.  Presented here, for the first time, are atomic force microscopy (AFM) 

images of ordered trimeric PS I complexes on gold surfaces along with preliminary data 

for using these ordered PS I surfaces as photovoltaic devices.  Functionalization of gold 

surfaces with the isolated photosystem II (PS II) RC complex from green plants was 

attempted and confirmed by AFM measurements as well. 

 The cyanobacterial PS I complex exists in vivo most exclusively as a trimer.  The 

trimer has a molecular weight of 1068 kDa, forming a cloverleaf structure with a 

diameter of 22 nm and height of 9 nm [22].  Each monomer contains 90 light harvesting 

Chls and 22 carotenoids which transfer energy down to the electron transport chain which 

consist of six Chls, two phylloquinones, and three 4Fe4S clusters.  Charge separation 

initiates at P700, a heterodimer of chlorophyll a and chlorophyll a´, with electron transfer 

proceeding along a branch of the symmetrically arranged Chl and phylloquinone subunits 

to the three 4Fe4S clusters.  The oxidation potential of P700+ is only +0.4 V, but the 
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reduction potential of the 4Fe4S cluster is –0.7 V, giving an overall redox potential of 1.1 

V.  We have used trimeric PS I complexes obtained from high quality crystals of 

cyanobacterial Thermosynnechococcus elongatus.  This is to ensure high sample purity 

and structural integrity for the PS I complexes.  The use of trimeric PS I complexes 

immediately offers two important advantages in surface functionalization when compared 

to monomeric P SI RC complexes.  First, trimeric cyanobacterial PS I complexes are 

more disk-like than isolated plant PS I complexes and should provide a better orientation 

uniformity and packing density, which are essential requirements for maximal current 

generation.  Second, its larger and more intact antenna system compared to monomeric 

PS I RC complexes (~ 40 Chl molecules per RC [4]) used by Greenbaum et al. [4] and 

Baldo et al. [6] should provide higher efficiency light harvesting and energy funneling to 

the RC. 

Experimental 

 PC solar cell devices were fabricated as described by Greenbaum et al [3].  Gold 

surfaces were prepared by evaporating gold (~ 200 nm) onto atomically flat silicon 

wafers (P100) at a temperature of 300-400 °C at high vacuum (~ 10-8 torr).  Cut glass 

slides were then glued to the gold surface in a clean room environment and allowed to 

dry.  The glass slides could then be removed from the wafer, possessing a surface that 

was the mirror image of the silicon wafer.  The gold surfaces were then functionalized by 

immersion in a solution of 2-mercaptoethanol for ~ 10 minutes, resulting in a low energy 

hydrophilic surface.  After this, the substrates were rinsed with nanopure distilled water, 

dried under ultrapure nitrogen (99.995%), and then incubated in a buffered PS I solution 

(~ 10-3 M conc.) overnight for ~ 12 hrs at 5º C, resulting in a surface derivatized with PS 
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I trimers.  The majority of these RC complexes orient perpendicular, with the P700 Chls 

closest to the to the substrate, so that electron transport is vectorial and normal (i.e. 

downward) to the surface [3].  After PS I incubation, the devices were then stored in a 

buffered solution (pH = 6.4) if they were not to be immediately tested, but not for a 

period of time longer than 1 week (usually 24-72 hrs).  Before testing the devices, the 

surfaces were again rinsed with nanopure water and dried under ultrapure nitrogen.  AFM 

images were then acquired for the functionalized gold surfaces.  Randomly selected 1000 

nm X 1000 nm areas were imaged for bare gold surfaces, 2- mercaptoethanol derivatized 

surfaces, and PS I derivatized surfaces.  AFM surface roughness and grain analysis 

comparisons were performed for bare gold, 2-mercaptoethanol functionalized, and PS I 

functionalized surfaces to verify that the PS I functionalized gold surfaces were not 

experimental artifacts.  AFM images were acquired with a Nanoscope IIIa in multimode 

at room temperature and room atmosphere.  All AFM images were analyzed with 

Scanning Probe Image (SPI) Processor v. 4.3.1.0. 

 Simplified schematics of the working photovoltaic devices are shown in Figure 

3A-B.  A wet electrochemical device (Figure 3A) and solid state electronic device 

(Figure 3B), were tested.  Preliminary photoinduced short circuit current measurements 

of these devices were made by first soldering a shielded cable to the gold surface of the 

device to be tested (~ 1 cm2), for use as an electrode contact.  Then the devices were 

placed in a shielded container and the electrode contacts connected to a Keithley 

picoammeter to measure the photocurrent.  For the wet cell devices, a Pt reference 

electrode was used where PBS buffer (pH = 7.2) was the electrolyte.  For the solid state 

devices, a conductive rubber (ZOFLEX®CD45.1) was used as the reference electrode, 
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and the device was illuminated from the transparent bottom of the substrate.  The wet cell 

and solid state devices were illuminated with a 75 W Hg arc lamp, and the current change 

with light on-off was recorded.  The photocharacteristic spectrum (see Figure 3E) was 

also acquired by illuminating with an excitation intensity of ~ 1.5 W/cm2 from a 75 W Xe 

arc lamp and using bandpass filters (~ 10 nm bandwidth) that spanned the PS I spectrum 

from 620-700 nm, and recording the current change with light on-off.  For the 

photocharacteristic spectrum measurements, a wet piece of buffered gel (~ 1mm thick) 

was placed on the substrate surface of the wet electrochemical device so that there would 

be rugged and durable contact between the surface and the Pt reference electrode.  The 

buffered gel electrode contact was prepared by mixing SIGMA Agarose Type I-A: Low 

EEO gel powder with nanopure PBS buffer (pH = 7.2) under heat until boiling, then 

refrigerating at 5º C for at least 4-6 hours.  For all the devices tested, when the light was 

switched on the signal always reappeared at the same value.  Lastly, control experiments 

of bare gold surfaces and 2-mercaptoethanol derivatized surfaces did not reveal any 

photoinduced current generation during illumination, confirming that the electrical 

activity was due to the presence of photosynthetic complexes. 

Results and Discussion 

 A. Trimeric PS I RC Functionalized Surfaces.  Cyanobacterial PS I complexes 

self-orient to readily form ordered monolayers on hydrophilic –OH terminated surfaces 

as suggested by refs. [4, 12].  As determined by AFM grain analysis (Figure1A-C), the 

mean particle size diameter and surface height for the PS I functionalized surfaces were   

~ 30 nm and  ~ 9 nm, respectively (as shown in Figure 1D-E), with a surface coverage > 

85% for three randomly selected PS I derivatized areas.  This corresponds well to the 
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dimensions of the trimeric PS I complex (20 nm x 20 nm x 9 nm), and indicates 

successful, regular orientation of the complex on the 2-mercaptoethanol treated surface, 

as the ethanol groups hydrogen bond to and orient the PS I trimer complexes.  While the 

surface height of the functionalized surface almost corresponds exactly to the z-axis 

dimension of the PS I complex (9 nm), the diameter according to the grain analysis does 

not (30 nm vs. 20 nm).  This is likely due to fact that the AFM tip size (~ 10 nm) is larger 

than the distance between some of the adjacent complexes, which results in a blurring of 

the surface image and undercounting of individual complexes.  This also results in the 

asymmetric grain diameter distribution as shown in Figure 1D.  The integrity and 

robustness of the oriented trimeric PS I complexes were then demonstrated by 

photocurrent measurements (see below), showing that these derivatized surfaces can act 

as nanoscale photovoltaic devices.   

 It is interesting to compare our PS I surface coverage (< 85%) with the result 

published by Greenbaum et al. (~ 70%).  However, they used “isolated” monomeric PS I 

complexes from spinach which contain only ~ 40 Chl molecules out of the 167 Chl 

molecules per RC in the native monomeric form [3, 4].  Consequently, these complexes 

have lower surface area (6 nm x 5nm) compared to cyanobacterial trimeric PS I, and 

therefore should have lower probability of stable binding to the mercaptoethanol 

derivatized gold surface.  Additionally, since these monomeric PS I complexes are altered 

from their native configuration during the purification process; their positively charged 

ends, which bind ferredoxin and plastocyanin, may be disrupted.  Therefore, some of 

these complexes may not be able to effectively H-bond to the –OH groups on the 
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functionalized gold surface, or remain bound to the surface after multiple washing and 

drying steps [4]. 

 The short circuit current density of the wet electrochemical devices was ~ 25 

μA/cm2, under white light illumination with an excitation intensity of ~ 1 W/cm2, and ~ 2 

nA/cm2 (with the gel electrode contact), under illumination at λ = 680 nm with an 

excitation intensity of ~ 1.5 W/cm2.  We note that assuming a surface coverage density of 

85% this corresponds to an estimated internal QE of < 0.01% for the wet device with 

excitation at 680 nm when assuming no reflection from the Au surface (see Appendix A).  

While this value is much lower than the QE value presented by Baldo et al. for their 

fabricated devices (0.12% when accounting for overestimation), it is reminded that no 

stabilizing layer was used for the photosynthetic complexes in our devices.  It is possible 

that without using a stabilizing medium such as surfactant peptides, the native 

conformation of the PS I complex changes enough so that some of the Chl-Chl distances 

are shortened appreciably.  If this happens, then quenching, and thus effects such as 

triplet bleaching, becomes significant [19, 25].  It is also possible that without the 

stabilizing peptide layer, the quenching of Chl excited states by the Au surface could be a 

factor as well [14].  Since there is no direct coupling between the oriented RC complexes 

and the cathode, an intermediary electron acceptor/donor might be needed to facilitate 

conduction.  For example, recent work by Trammell et al. [14], reported wet cell 

measurements of ordered bacterial RC monolayers on Ni-NTA terminated Au surfaces 

that required the presence of ubiquinone-10 in the buffered solution to maximize the 

current output (500 nA for 1 W/cm-2 excitation at > 700 nm).  Regardless, our QE result 

is important in that it illustrates the robust nature of trimeric cyanobacterial PS I 
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complexes, i.e. they can be directly coupled to a metallic surface and result in a working 

molecular electronic device.   

 As shown in Figure 2E, the action spectrum of the photocurrent is in agreement 

with the red absorption spectrum of PS I, indicating that the current originates from 

charge separation within the PS I complexes (see below).  The corresponding time scan 

of the current generated by a wet chemical PS I functionalized device with the light on-

off is shown in Figure 2C.  Reversible and repeatable changes were clearly observed, 

with the current only generated when the light is on, suggesting that PS I retains its 

activity.  We also confirmed that the electron transfer direction is toward the liquid 

electrode, suggesting that most of the complexes are indeed oriented perpendicular, with 

P700 closest to the Au surface (data not shown), in agreement with ref. [4].  These 

devices were operational for several days (~ 1-7 days).  We note that stable currents were 

observed when the light was switched on for several hours.  Experiments with the solid 

state devices, using the conductive rubber (ZOFLEX®CD45.1) as an electrode, showed a 

short circuit current density of ~ 5 μA/cm2, under an illumination intensity of ~ 1 W/cm2, 

which is about five times smaller than the current observed with the device shown in 

Figure 2A.  This is most likely due to the less effective coupling of the rubber electrode 

to the surface compared to the wet device.  A typical current as a function of time for this 

device with the light on-off is shown in Figure 3D.  Overall, these experiments, while not 

definitive, offer further evidence for the robust structural integrity of trimeric PS I 

complexes that can be directly bound to metal surfaces, without any stabilizing interface, 

for use as nanoscale photovoltaic devices, as indicated in ref. [12]. 
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 B. Isolated PS II RC Functionalized Surfaces.  Surface functionalization of 2-

mercaptoethanol derivatized gold surfaces was also attempted with isolated PS II RC 

complexes.  PS II is the other photosynthetic reaction center in cyanobacteria and green 

plants, and is responsible for the splitting of water due its to extremely high redox 

potential (~ 1.2 eV).  PS II RC complexes can be prepared in “isolated” form, which 

consist of only the reaction center chlorin pigment molecules (6 chlorophyll and 2 

pheophytin molecules) that are bound by the D1/D2 proteins and the cytochrome b559 

complex [24].  Since the isolated PS II RC is only a part of the native PS II complex, they 

should not orient as preferentially to the hydrophilic –OH surface as the trimeric PS I 

complex.  However, it should give an indication of whether smaller photosynthetic 

pigment complexes (e.g. light harvesting complexes such as bacterial LH1 and LH2) and 

cofactors (e.g. beta carotene molecules and other carotenoids) might bind to selectively 

functionalized surfaces. 

 Functionalized PS II gold surfaces were prepared via the procedure described 

earlier, except that the gold surfaces were immersed in a buffered solution (pH = 7.0) of 

isolated PS II RC complexes (~ 10-4 M conc.) for 10 minutes at room temperature [26].  

AFM images of the gold surfaces incubated with PS II RC complexes indicated high-

density functionalization, as shown in Figure 3.  Grain analysis of the PS II surfaces 

indicated that the average z-axis dimension of the functionalized surface was ~ 5 nm 

(Figure 3C), which corresponds well to the dimensions of the isolated PS II RC complex 

(5 nm x 5nm x 5nm) used in our study [27].  Since the PS II RC is smaller than the AFM 

tip, the individual complexes could not be resolved; however, the surface coverage could 

and was estimated to be ~ 70%.  This shows that the isolated PS II RC complex also 
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binds extremely well to the mercaptoethanol treated gold surfaces to form ordered 

monolayers.  Since the isolated PS II RC complex is square in its dimensions, 

determining the functionalized orientation of these bound complexes was not feasible.  

Regardless, these experiments indicate that other photosynthetic complexes may orient 

on functionalized surfaces.   

Conclusions 

With these experiments we reaffirm that photosynthetic complexes may be 

successfully used as an interfacial material in photovoltaic devices as indicated in 

previous results.  It is feasible that more elaborate designs (e.g. layered structures, tandem 

cell designs) with a controlled orientation could achieve significantly higher quantum 

efficiencies.  With better nanoscale architectures that more efficiently promote electron 

transport and prevent energy-wasting recombination, significant improvements are 

anticipated.  More specifically, architectures could be designed to mimic the efficient 

photon absorption and charge separation properties characteristic of in vivo biological 

photosynthetic units (light harvesting complexes + RC complexes) [25].  For example, 

the use of intact PS I complexes with peripheral light harvesting antenna complexes (e.g. 

LHCI) may lead to improved power conversion efficiency, as light harvesting antennas 

could increase the absorption cross-section.  The use of additional electron transporting 

materials in fabrication could also increase quantum efficiency; for example, 

polyelectrolyte gels [17] that have charged moieties could help stabilize the orientation 

and the structural integrity of other less robust protein complexes (such as the PS II RC 

complex).  Moreover, a number of systems have been identified which polymerize into 

hydrogels, such as alginate and hyaloronan polysaccharides [28], poly (ethylene oxide) 



www.manaraa.com

259 

dimethacrylates [29] and poly (ethylene glycol) diacrylate [30].  Methods of protecting 

sensitive molecules from light-induced polymerization have also been developed recently 

[31].  This is achieved by incorporating sensitive molecules into gelatin-based wet 

granules.  We also note that cells (chondrocytes) [29] and proteins (bovine serum 

albumin) [31] survived photo-polymerization even without gelatine protection.  Finally, 

successful development of surface oriented (and stable) single PCs and/or protein arrays, 

which would reduce or eliminate the inhomogeneous spectral broadening, is also of 

interest for spectroscopic studies (polarization-sensitive measurements), as it could lead 

to profound and new insights that are unobtainable through studying bulky samples (e.g. 

energy transfer time determination via zero-phonon linewidths, excitonic band structure, 

transition dipole moment vector directions). 

Appendix A. Quantum Efficiency Calculation 

 The QE of our fabricated photovoltaic devices can be approximated as 

                                       
deviceby  absorbed photons

device ofoutput  electron
=QE                                     (1) 

For an excitation intensity of 1.5 W/cm2 at 680 nm, this yields ~ 5.1 x 1019 photons.  

Assuming the extinction coefficient for trimeric PS I complexes at 680 nm is 11.4 x 105 

(M-1) (cm-1) [32] and that the PS I concentration is ~ 1.8 x 10-10 M (surface coverage 

where each PS I complex is separated by 10 nm), then ~ 2.0 x 1016 photons/cm2 can be 

absorbed by the device.  With a maximal current output of 2.0 nA/cm2 this corresponds to 

a QE = 0.0001 or < 0.01 for the fabricated devices. 
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Figure 1.  Surface and particle analysis of PS I derivatized gold surfaces.  (A) A 1000 nm 
x 1000 nm 3D AFM surface profile image of the functionalized gold surface, which 
shows the highly dense and regularly ordered network of oriented PS I RC complexes.  
(B).  A 1000 x1000 nm AFM surface image and a corresponding grain analysis image 
(C), with the corresponding grain height (Maximal Z) and size distributions (Diameter) 
shown in (D) and (E). (see text for more details).   
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Figure 2.  Schematics of working photovoltaic devices with immobilized PS I RC 
complexes and their corresponding photocurrent characteristics.  (A) The photovoltaic 
device uses a gel electrode contact; the corresponding photocurrent with light modulated 
on-off in 2 sec intervals is shown in (C).  (B) The photovoltaic device uses a rubber 
electrode; the corresponding photocurrent with light modulated on-off in 2 sec intervals is 
shown in (D). (see text for details).  In (E) preliminary photocharacteristic absorption 
spectrum of a working photovoltaic device (red dots) that corresponds to the red edged 
PS I absorption spectrum (solid line) [2] is shown.
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Figure 3.  Surface and particle analysis of PS II derivatized gold surfaces.  (A) A 1000 
nm x 1000 nm, 3D AFM surface profile image of the PS II functionalized gold surface, 
which shows the dense surface coverage.  (B) The AFM surface image and (C) its 
corresponding grain height distribution. (see text for more details) 
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CHAPTER 9 – CONCLUSIONS 

 

 This dissertation presents the results of recent hole-burning and single-complex 

spectroscopy experiments on photosynthetic RC complexes.  In addition, preliminary 

results are also presented on the fabrication of biomolecular electronic devices through 

orienting photosynthetic RC complexes on solid-state materials, 

Using a combination of hole-burning spectroscopy measurements on the low 

energy donor state (P680) of the PS II RC and theoretical modeling, the nature of the 

primary charge separation dynamics in PS II was investigated.  Previously, it has been 

suggested by Prokohorenko and Holzwarth that the charge separation kinetics in the PS II 

RC are highly dispersive, based upon low temperature (5 K) photon echo experiments (J. 

Phys. Chem. B 2000, 104, 11563).  Assuming that the PS II charge separation kinetics are 

indeed highly dispersive, a distribution of charge separation times was used in theoretical 

simulations of NPHB and TBHB experiments to better explain hole-profiles burned into 

the low energy region (680-684 nm) of isolated PS II RC complexes.  The theoretical 

simulations showed increased correlation to experimental results and indicated that the 

primary charge separation rate in the PS II RC may indeed be highly dispersive due to 

intrinsic structural heterogeneity resulting from the protein matrix.  In light of this, the 

nature of the weakly absorbing band at 684 nm (P684), which is a shoulder of the intense 

primary electron donor band (P680), was argued to result from a subset of more intact 

isolated PS II RC complexes.  This conclusion was supported by other HB experimental 

data and theoretical calculations. Specifically, Stark and high-pressure HB experiments 

showed similar hole-burning experimental results (e.g. fΔμ values and linear-pressure 
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rates, respectively) for both P680 and P684 bands, electron-phonon coupling parameters 

and NPHB profiles were also very similar for holes burned from 680-684 nm.  Excitonic 

calculations of the isolated PS II RC, according to the “pentamer” model by Jankowiak et 

al. (J. Phys. Chem. B 2002, 106, 8803), provide additional evidence by asserting that two 

populations of isolated PS II RC complexes, one with the primary donor band at 680 nm 

and the other at 684 nm, could result in the observed isolated PS II Qy absorption 

spectrum. 

PS I - CP43′ supercomplexes of cyanobacterial Synechocystis PCC 6803, which 

form under iron stress conditions, were studied and new insights into the energy transfer 

dynamics of PS I were gained.  Absorption, fluorescence excitation, emission, and HB 

spectra were measured at liquid helium temperatures for Synechocystis PCC 6803 PS I - 

CP43′ supercomplexes and for trimeric PS I core complexes, respectively.  The results 

were then compared to room temperature, time-domain experiments (Melkozernov et al, 

Biochemistry 2003, 42, 3893), as well as with low-temperature, steady-state experiments 

on PS I - CP43΄ supercomplexes of Synechococcus PCC 7942 (Andrizhiyevskaya et al, 

BBA 2002, 1556, 265).  It was found that in contrast to CP43′ complexes of 

Synechococcus PCC 7942, CP43′ complexes of Synechocystis PCC 6803 possess two 

low-energy states that are analogous to the quasi-degenerate states A and B of CP43 PS II 

(Jankowiak et al, J. Phys. Chem. B 2000, 104, 11805).  It was determined that energy 

transfer between CP43′ and the PS I core occurs significantly through state A.  Through 

interpretation of absorption and fluorescence excitation spectra along with NPHB results 

it was demonstrated that the low temperature (5K) EET time between state A of CP43′ 
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and the PS I core in PS I - CP43′ supercomplexes from Synechocystis PCC 6803 is ~ 60 

ps, which is significantly slower than EET observed at room temperature.  Experimental 

NPHB results are also consistent with fast (≤ 10 ps) energy transfer from state B to state 

A.  It was concluded that energy absorbed by the CP43′ manifold has, on average, a 

greater chance of being transferred to the RC and utilized for charge separation than for 

energy to be absorbed by the PS I core antenna.  Thus, at low temperatures, the energy 

transfer from CP43′ to the RC occurs along a relatively well-defined path, avoiding the 

“red antenna state” Chl pigments.  This indicates that the “red states” of the PS I core are 

most likely localized on the B7-A32 and B37-B38 Chl dimers located close to the PS I 

trimerization domain (PsaL subunit).  It is also suggested that the A38-A39 dimer does 

not contribute to the red antenna Chl pool, as this dimer is located along the CP43΄-PS I 

energy transfer path. 

Low temperature (2–10 K) NPHB and single photosynthetic complex 

spectroscopy experiments were used to probe the excitonic structure and EET processes 

of “red state” Chl pigments in trimeric cyanobacterial PS I complexes from Synechocystis 

PCC 6803 and Thermosynechococcus elongatus.  It was shown that individual PS I 

complexes of Synechocystis PCC 6803 (which have two red antenna states, i.e. C706 and 

C714) reveal only a broad structureless fluorescence band with a maximum near 720 nm, 

indicating strong electron-phonon coupling for the lowest-energy C714 red-state.  The 

absence of zero-phonon lines (ZPLs) belonging to the C706 red- state in the emission 

spectra of individual PS I complexes from Synechocystis PCC 6803 suggests that the 

C706 and C714 red antenna states of Synechocystis PCC 6803 are connected by efficient 

energy transfer with a characteristic transfer time of ~ 5 ps.  This finding is in agreement 



www.manaraa.com

269 

with previous spectral hole burning data obtained for bulk samples of Synechocystis PCC 

6803 (Hsin et al., J. Phys. Chem. B 2004, 108, 10515).  Samples prepared from dissolved 

Thermosynechococcus elongatus PS I crystals showed the presence of narrow ZPLs near 

710 nm in addition to the broad fluorescence band at ~ 730 nm, as previously reported by 

Jelezko et al. (J. Phys. Chem. B 2000, 104, 8093), for both NPHB and single-complex 

spectroscopy measurements; however, the origin of these narrow ZPLs is still 

undetermined.  These experiments demonstrate the importance of comparing the results 

of ensemble (spectral hole burning) and single complex measurements, as both 

techniques were required to determine the presence of two red state pools (C706 and 

C714) in Synechocystis PCC 6803 and to confirm the narrow ZPL features at ~ 710 nm in 

Thermosynechococcus elongatus.   

Finally, preliminary experiments with molecular electronic devices fabricated 

from trimeric PS I photosynthetic complexes were presented.  It was found that trimeric 

PS I complexes form self-assembled monolayers on 2-mercaptoethanol derivatized 

surfaces as suggested by Greenbaum et al. (Phys. Rev. Lett. 1997, 79, 3294).  This was 

confirmed by surface characterization with AFM, as the mean particle size (20 x 20 nm) 

and height (9 nm) of derivatized surfaces correlated to the dimensions of the PS I 

complex.  The PS I surface coverage was estimated to be ~ 85%.  Current generation was 

possible with these devices after photoexcitation over the PS I absorption wavelength 

range (~ 400-700 nm).  This indicates that the trimeric PS I complexes remain functional 

after orientation and immobilization on the gold surface even though there is no 

stabilizing interfacial medium.  It is possible then that photosynthetic complexes could be 

used in future photovoltaic cells. 
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